Mots-clés : Lagrange multiplier rule, perturbation method
@article{TIMM_2024_30_2_a14,
author = {M. I. Sumin},
title = {The perturbation method and a regularization of the {Lagrange} multiplier rule in convex problems for constrained extremum},
journal = {Trudy Instituta matematiki i mehaniki},
pages = {203--221},
year = {2024},
volume = {30},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TIMM_2024_30_2_a14/}
}
TY - JOUR AU - M. I. Sumin TI - The perturbation method and a regularization of the Lagrange multiplier rule in convex problems for constrained extremum JO - Trudy Instituta matematiki i mehaniki PY - 2024 SP - 203 EP - 221 VL - 30 IS - 2 UR - http://geodesic.mathdoc.fr/item/TIMM_2024_30_2_a14/ LA - ru ID - TIMM_2024_30_2_a14 ER -
%0 Journal Article %A M. I. Sumin %T The perturbation method and a regularization of the Lagrange multiplier rule in convex problems for constrained extremum %J Trudy Instituta matematiki i mehaniki %D 2024 %P 203-221 %V 30 %N 2 %U http://geodesic.mathdoc.fr/item/TIMM_2024_30_2_a14/ %G ru %F TIMM_2024_30_2_a14
M. I. Sumin. The perturbation method and a regularization of the Lagrange multiplier rule in convex problems for constrained extremum. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 30 (2024) no. 2, pp. 203-221. http://geodesic.mathdoc.fr/item/TIMM_2024_30_2_a14/
[1] Alekseev V.M., Tikhomirov V.M., Fomin S.V., Optimalnoe upravlenie, Nauka, M., 1979, 432 pp. | MR
[2] Tikhomirov V.M., Rasskazy o maksimumakh i minimumakh, Nauka, M., 1986, 192 pp.
[3] Avakov E.R., Magaril-Ilyaev G.G., Tikhomirov V.M., “O printsipe Lagranzha v zadachakh na ekstremum pri nalichii ogranichenii”, Uspekhi mat. nauk, 68:3(411) (2013), 5–38 | DOI | MR | Zbl
[4] Arutyunov A.V., Zhukovskiy S.E., “On the Lagrange multiplier rule for minimizing sequences”, Eurasian Math. J., 14:1 (2023), 8–15 | DOI | MR
[5] Tröltzsch F., Optimal control of partial differential equations, Ser. Theory, Methods and Applications. Graduate Studies in Mathematics, 112, AMS, Providence, Rhode Island, 2010, 408 pp. | DOI | MR | Zbl
[6] Borzi A., The sequential quadratic Hamiltonian method. Solving optimal control problems, Chapman and Hall/CRC Press, Boca Raton, FL, 2023, 266 pp. | DOI | MR
[7] Sumin M.I., “Regulyarizovannye printsip Lagranzha i printsip maksimuma Pontryagina v optimalnom upravlenii i obratnykh zadachakh”, Tr. In-ta matematiki i mekhaniki UrO RAN, 25:1 (2019), 279–296 | DOI | MR
[8] Vasilev F.P., Metody optimizatsii: v 2-kh kn., MTsNMO, Moskva, 2011, 1056 pp.
[9] Tikhonov A.N., Arsenin V.Ya., Metody resheniya nekorrektnykh zadach, Nauka, M., 1974, 224 pp.
[10] Ivanov V.K., Vasin V.V., Tanana V.P., Teoriya lineinykh nekorrektnykh zadach i ee prilozheniya, Nauka, M., 1978, 208 pp.
[11] Bakushinskii A.B., Goncharskii A.V., Nekorrektnye zadachi. Chislennye metody i prilozheniya, Izd-vo MGU, M., 1989, 200 pp.
[12] Kokurin M.Yu., Elementy obschei teorii regulyarizatsii nekorrektnykh zadach, Institut kompyuternykh issledovanii, M.; Izhevsk, 2023, 356 pp.
[13] Sumin M.I., “Regulyarizatsiya v lineino vypukloi zadache matematicheskogo programmirovaniya na osnove teorii dvoistvennosti”, Zhurn. vychisl. matematiki i mat. fiziki, 47:4 (2007), 602–625 | MR | Zbl
[14] Sumin M.I., “Regulyarizovannaya parametricheskaya teorema Kuna — Takkera v gilbertovom prostranstve”, Zhurn. vychisl. matematiki i mat. fiziki, 51:9 (2011), 1594–1615 | MR | Zbl
[15] Golshtein E.G., Teoriya dvoistvennosti v matematicheskom programmirovanii i ee prilozheniya, Nauka, M., 1971, 352 pp.
[16] Varga Dzh., Optimalnoe upravlenie differentsialnymi i funktsionalnymi uravneniyami, Nauka, M., 1977, 624 pp.
[17] Sumin M.I., “O regulyarizatsii klassicheskikh uslovii optimalnosti v vypuklykh zadachakh optimalnogo upravleniya”, Tr. In-ta matematiki i mekhaniki UrO RAN, 26:2 (2020), 252–269 | DOI | MR
[18] Tikhonov A.N., “Ob ustoichivosti zadachi optimizatsii funktsionalov”, Zhurn. vychisl. matematiki i mat. fiziki, 6:4 (1966), 631–634
[19] Oben Zh.-P., Nelineinyi analiz i ego ekonomicheskie prilozheniya, Mir, M., 1988, 264 pp. | MR
[20] Klark F., Optimizatsiya i negladkii analiz, Nauka, M., 1988, 280 pp. | MR
[21] Borwein J.M., Strojwas H.M., “Proximal analysis and boundaries of closed sets in Banach space”, Part I: Theory, Can. J. Math., 38:2 (1986), 431–452 ; Part II: Applications, Can. J. Math., 39:2 (1987), 428–472 | DOI | MR | Zbl | DOI | Zbl
[22] Loewen P.D., Optimal control via nonsmooth analysis, Ser. CRM Proceedings and Lecture Notes, 2, AMS, Providence, RI, 1993, 153 pp. | DOI | MR | Zbl
[23] Clarke F.H., Ledyaev Yu.S., Stern R.J., Wolenski P.R., Nonsmooth analysis and control theory, Ser. Graduate texts in mathematics, 178, Springer-Verlag, NY, 1998, 278 pp. | DOI | MR | Zbl
[24] Sumin M.I., “Suboptimal control of systems with distributed parameters: minimizing sequences, value function, regularity, normality”, Control and Cybernetics, 25:3 (1996), 529–552 | MR | Zbl
[25] Oben Zh.-P., Ekland I., Prikladnoi nelineinyi analiz, Mir, M., 1988, 512 pp. | MR
[26] Sumin M.I., “Nedifferentsialnye teoremy Kuna–Takkera v zadachakh na uslovnyi ekstremum i subdifferentsialy negladkogo analiza”, Vestn. rossiiskikh universitetov. Matematika, 25:131 (2020), 307–330 | DOI
[27] Ekeland I., “On the variational principle”, J. Math. Anal. Appl., 47:2 (1974), 324–353 | DOI | MR | Zbl