The perturbation method and a regularization of the Lagrange multiplier rule in convex problems for constrained extremum
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 30 (2024) no. 2, pp. 203-221 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

We consider a regularization of the Lagrange multiplier rule (LMR) in the nondifferential form in a convex problem for constrained extremum with an operator equality-constraint in a Hilbert space and a finite number of functional inequality-constraints. The objective functional of the problem is assumed to be strongly convex, and the convex closed set of its admissible elements also belongs to a Hilbert space. The constraints of the problem contain additively included parameters, which makes it possible to use the so-called perturbation method to study it. The main purpose of the regularized LMR is the stable generation of generalized minimizing sequences (GMSs), which approximate the exact solution of the problem using extremals of the regular Lagrange functional. The regularized LMR itself can be interpreted as a GMS-generating (regularizing) operator, which assigns to each set of input data of the constrained extremum problem the extremal of its corresponding regular Lagrange functional, in which the dual variable is generated in accordance with one or another procedure for stabilizing the dual problem. The main attention is paid to: (1) studying the connection between the dual regularization procedure and the subdifferential properties of the value function of the original problem; 2) proving the convergence of this procedure in the case of solvability of the dual problem; (3) an appropriate update of the regularized LMR; (4) obtaining the classical LMR as a limiting version of its regularized analog.
Keywords: convex problem for constrained extremum, regularization, value function, subdifferential, dual problem, generalized minimizing sequence, regularizing algorithm.
Mots-clés : Lagrange multiplier rule, perturbation method
@article{TIMM_2024_30_2_a14,
     author = {M. I. Sumin},
     title = {The perturbation method and a regularization of the {Lagrange} multiplier rule in convex problems for constrained extremum},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {203--221},
     year = {2024},
     volume = {30},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2024_30_2_a14/}
}
TY  - JOUR
AU  - M. I. Sumin
TI  - The perturbation method and a regularization of the Lagrange multiplier rule in convex problems for constrained extremum
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2024
SP  - 203
EP  - 221
VL  - 30
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TIMM_2024_30_2_a14/
LA  - ru
ID  - TIMM_2024_30_2_a14
ER  - 
%0 Journal Article
%A M. I. Sumin
%T The perturbation method and a regularization of the Lagrange multiplier rule in convex problems for constrained extremum
%J Trudy Instituta matematiki i mehaniki
%D 2024
%P 203-221
%V 30
%N 2
%U http://geodesic.mathdoc.fr/item/TIMM_2024_30_2_a14/
%G ru
%F TIMM_2024_30_2_a14
M. I. Sumin. The perturbation method and a regularization of the Lagrange multiplier rule in convex problems for constrained extremum. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 30 (2024) no. 2, pp. 203-221. http://geodesic.mathdoc.fr/item/TIMM_2024_30_2_a14/

[1] Alekseev V.M., Tikhomirov V.M., Fomin S.V., Optimalnoe upravlenie, Nauka, M., 1979, 432 pp. | MR

[2] Tikhomirov V.M., Rasskazy o maksimumakh i minimumakh, Nauka, M., 1986, 192 pp.

[3] Avakov E.R., Magaril-Ilyaev G.G., Tikhomirov V.M., “O printsipe Lagranzha v zadachakh na ekstremum pri nalichii ogranichenii”, Uspekhi mat. nauk, 68:3(411) (2013), 5–38 | DOI | MR | Zbl

[4] Arutyunov A.V., Zhukovskiy S.E., “On the Lagrange multiplier rule for minimizing sequences”, Eurasian Math. J., 14:1 (2023), 8–15 | DOI | MR

[5] Tröltzsch F., Optimal control of partial differential equations, Ser. Theory, Methods and Applications. Graduate Studies in Mathematics, 112, AMS, Providence, Rhode Island, 2010, 408 pp. | DOI | MR | Zbl

[6] Borzi A., The sequential quadratic Hamiltonian method. Solving optimal control problems, Chapman and Hall/CRC Press, Boca Raton, FL, 2023, 266 pp. | DOI | MR

[7] Sumin M.I., “Regulyarizovannye printsip Lagranzha i printsip maksimuma Pontryagina v optimalnom upravlenii i obratnykh zadachakh”, Tr. In-ta matematiki i mekhaniki UrO RAN, 25:1 (2019), 279–296 | DOI | MR

[8] Vasilev F.P., Metody optimizatsii: v 2-kh kn., MTsNMO, Moskva, 2011, 1056 pp.

[9] Tikhonov A.N., Arsenin V.Ya., Metody resheniya nekorrektnykh zadach, Nauka, M., 1974, 224 pp.

[10] Ivanov V.K., Vasin V.V., Tanana V.P., Teoriya lineinykh nekorrektnykh zadach i ee prilozheniya, Nauka, M., 1978, 208 pp.

[11] Bakushinskii A.B., Goncharskii A.V., Nekorrektnye zadachi. Chislennye metody i prilozheniya, Izd-vo MGU, M., 1989, 200 pp.

[12] Kokurin M.Yu., Elementy obschei teorii regulyarizatsii nekorrektnykh zadach, Institut kompyuternykh issledovanii, M.; Izhevsk, 2023, 356 pp.

[13] Sumin M.I., “Regulyarizatsiya v lineino vypukloi zadache matematicheskogo programmirovaniya na osnove teorii dvoistvennosti”, Zhurn. vychisl. matematiki i mat. fiziki, 47:4 (2007), 602–625 | MR | Zbl

[14] Sumin M.I., “Regulyarizovannaya parametricheskaya teorema Kuna — Takkera v gilbertovom prostranstve”, Zhurn. vychisl. matematiki i mat. fiziki, 51:9 (2011), 1594–1615 | MR | Zbl

[15] Golshtein E.G., Teoriya dvoistvennosti v matematicheskom programmirovanii i ee prilozheniya, Nauka, M., 1971, 352 pp.

[16] Varga Dzh., Optimalnoe upravlenie differentsialnymi i funktsionalnymi uravneniyami, Nauka, M., 1977, 624 pp.

[17] Sumin M.I., “O regulyarizatsii klassicheskikh uslovii optimalnosti v vypuklykh zadachakh optimalnogo upravleniya”, Tr. In-ta matematiki i mekhaniki UrO RAN, 26:2 (2020), 252–269 | DOI | MR

[18] Tikhonov A.N., “Ob ustoichivosti zadachi optimizatsii funktsionalov”, Zhurn. vychisl. matematiki i mat. fiziki, 6:4 (1966), 631–634

[19] Oben Zh.-P., Nelineinyi analiz i ego ekonomicheskie prilozheniya, Mir, M., 1988, 264 pp. | MR

[20] Klark F., Optimizatsiya i negladkii analiz, Nauka, M., 1988, 280 pp. | MR

[21] Borwein J.M., Strojwas H.M., “Proximal analysis and boundaries of closed sets in Banach space”, Part I: Theory, Can. J. Math., 38:2 (1986), 431–452 ; Part II: Applications, Can. J. Math., 39:2 (1987), 428–472 | DOI | MR | Zbl | DOI | Zbl

[22] Loewen P.D., Optimal control via nonsmooth analysis, Ser. CRM Proceedings and Lecture Notes, 2, AMS, Providence, RI, 1993, 153 pp. | DOI | MR | Zbl

[23] Clarke F.H., Ledyaev Yu.S., Stern R.J., Wolenski P.R., Nonsmooth analysis and control theory, Ser. Graduate texts in mathematics, 178, Springer-Verlag, NY, 1998, 278 pp. | DOI | MR | Zbl

[24] Sumin M.I., “Suboptimal control of systems with distributed parameters: minimizing sequences, value function, regularity, normality”, Control and Cybernetics, 25:3 (1996), 529–552 | MR | Zbl

[25] Oben Zh.-P., Ekland I., Prikladnoi nelineinyi analiz, Mir, M., 1988, 512 pp. | MR

[26] Sumin M.I., “Nedifferentsialnye teoremy Kuna–Takkera v zadachakh na uslovnyi ekstremum i subdifferentsialy negladkogo analiza”, Vestn. rossiiskikh universitetov. Matematika, 25:131 (2020), 307–330 | DOI

[27] Ekeland I., “On the variational principle”, J. Math. Anal. Appl., 47:2 (1974), 324–353 | DOI | MR | Zbl