On a control reconstruction problem with nonconvex constraints
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 30 (2024) no. 2, pp. 188-202 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

A control reconstruction problem for dynamic deterministic affine-controlled systems is considered. This problem consists of constructing piecewise constant approximations of an unknown control generating an observed trajectory from discrete inaccurate measurements of this trajectory. It is assumed that the controls are constrained by known nonconvex geometric constraints. In this case, sliding modes may appear. To describe the impact of sliding modes on the dynamics of the system, the theory of generalized controls is used. The notion of normal control is introduced. It is a control that generates an observed trajectory and is defined in a unique way. The aim of reconstruction is to find piecewise constant approximations of the normal control that satisfy given nonconvex geometric constraints. The convergence of approximations is understood in the sense of weak convergence in the $L^2$ space. A solution to the control reconstruction problem is proposed.
Keywords: inverse problems, control reconstruction, sliding modes, nonconvex constraints, weak convergence, generalized controls.
@article{TIMM_2024_30_2_a13,
     author = {N. N. Subbotina and E. A. Krupennikov},
     title = {On a control reconstruction problem with nonconvex constraints},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {188--202},
     year = {2024},
     volume = {30},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2024_30_2_a13/}
}
TY  - JOUR
AU  - N. N. Subbotina
AU  - E. A. Krupennikov
TI  - On a control reconstruction problem with nonconvex constraints
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2024
SP  - 188
EP  - 202
VL  - 30
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TIMM_2024_30_2_a13/
LA  - ru
ID  - TIMM_2024_30_2_a13
ER  - 
%0 Journal Article
%A N. N. Subbotina
%A E. A. Krupennikov
%T On a control reconstruction problem with nonconvex constraints
%J Trudy Instituta matematiki i mehaniki
%D 2024
%P 188-202
%V 30
%N 2
%U http://geodesic.mathdoc.fr/item/TIMM_2024_30_2_a13/
%G ru
%F TIMM_2024_30_2_a13
N. N. Subbotina; E. A. Krupennikov. On a control reconstruction problem with nonconvex constraints. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 30 (2024) no. 2, pp. 188-202. http://geodesic.mathdoc.fr/item/TIMM_2024_30_2_a13/

[1] Osipov Yu.S., Kryazhimskii A.V., Inverse problems for ordinary differential equations: Dynamical solutions, Gordon and Breach, London, 1995, 625 pp. | MR | Zbl

[2] Osipov Yu.S., Vasilev F.P., Potapov M.M., Osnovy metoda dinamicheskoi regulyarizatsii, Izd-vo MGU, M., 1999, 237 pp.

[3] Kryazhimskii A.V., Osipov Yu.S., “O modelirovanii upravleniya v dinamicheskoi sisteme ”, Izv. AN SSSR. Ser. tekhn. kibernetika, 1983, no. 2, 51–60 | Zbl

[4] Krasovskii N.N., Subbotin A.I., Pozitsionnye differentsialnye igry, Nauka, M., 1974, 456 pp. | MR

[5] Osipov Yu.S., Kryazhimskii A.V., Maksimov V.I., “Nekotorye algoritmy dinamicheskogo vosstanovleniya vkhodov”, Tr. In-ta matematiki i mekhaniki UrO RAN, 17:1 (2011), 129–161 | Zbl

[6] Utkin V.I., Skolzyaschie rezhimy v zadachakh optimizatsii i upravleniya, Nauka, M., 1981, 368 pp.

[7] Gamkrelidze R.V., Osnovy optimalnogo upravleniya, Izd-vo Tbilisskogo un-ta, Tbilisi, 1975, 230 pp.

[8] Varga Dzh., Optimalnoe upravlenie differentsialnymi i funktsionalnymi uravneniyami, Nauka, M., 1977, 624 pp.

[9] Tikhonov A.N., Arsenin V.Ya., Metody resheniya nekorrektnykh zadach, Nauka, M., 1974, 224 pp.

[10] Kolmogorov A.N., Fomin S.V., Elementy teorii funktsii i funktsionalnogo analiza, 7-e izd., Fizmatlit, M., 2004, 572 pp. | MR

[11] Li E.B., Markus L., Osnovy teorii optimalnogo upravleniya, Nauka, M., 1972, 576 pp.

[12] Fattorini H.O., Infinite dimensional optimization and control theory, Cambridge Inc., NY, 1999, 800 pp. | MR | Zbl

[13] Subbotina N.N, Krupennikov E.A., “Slaboe so zvezdoi reshenie zadachi dinamicheskoi rekonstruktsii”, Tr. MIAN, 315 (2021), 247–260 | DOI | Zbl

[14] Subbotina N.N., Krupennikov E.A., “Variational Approach to Construction of Piecewise-Constant Approximations of the Solution of Dynamic Reconstruction Problem”, Differential Equations, Mathematical Modeling and Computational Algorithms, Springer Proc. in Math. Stat., 423, ed. Vladimir Vasilyev, Springer, Cham, 2023, 227–242 | DOI | MR

[15] Subbotina N.N., Krupennikov E.A., “Variational approach to solving control reconstruction problems”, Lobachevskii J. Math., 43:6 (2022), 1428–1437 | DOI | MR | Zbl

[16] Strekalovskii A.S., Elementy nevypukloi optimizatsii, Nauka, Novosibirsk, 2003, 356 pp.

[17] Hewitt E., Stromberg K., Real and abstract analysis, Springer-Verlag, Berlin, 1975, 490 pp. | MR | Zbl

[18] Rokafellar R.T., Vypuklyi analiz, Mir, M., 1973, 472 pp.