Voir la notice du chapitre de livre
@article{TIMM_2024_30_2_a10,
author = {S. A. Reshmin and M. T. Bektybaeva},
title = {Control of acceleration of a dynamic object by the modified linear tangent law in the presence of a state constraint},
journal = {Trudy Instituta matematiki i mehaniki},
pages = {152--163},
year = {2024},
volume = {30},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TIMM_2024_30_2_a10/}
}
TY - JOUR AU - S. A. Reshmin AU - M. T. Bektybaeva TI - Control of acceleration of a dynamic object by the modified linear tangent law in the presence of a state constraint JO - Trudy Instituta matematiki i mehaniki PY - 2024 SP - 152 EP - 163 VL - 30 IS - 2 UR - http://geodesic.mathdoc.fr/item/TIMM_2024_30_2_a10/ LA - ru ID - TIMM_2024_30_2_a10 ER -
%0 Journal Article %A S. A. Reshmin %A M. T. Bektybaeva %T Control of acceleration of a dynamic object by the modified linear tangent law in the presence of a state constraint %J Trudy Instituta matematiki i mehaniki %D 2024 %P 152-163 %V 30 %N 2 %U http://geodesic.mathdoc.fr/item/TIMM_2024_30_2_a10/ %G ru %F TIMM_2024_30_2_a10
S. A. Reshmin; M. T. Bektybaeva. Control of acceleration of a dynamic object by the modified linear tangent law in the presence of a state constraint. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 30 (2024) no. 2, pp. 152-163. http://geodesic.mathdoc.fr/item/TIMM_2024_30_2_a10/
[1] Perkins F.M., Derivation of linear-tangent steering laws, Air Force Report No. SSD-TR66-211. Nov.1966 | DOI
[2] Braison A., Kho Yu-shi, Prikladnaya teoriya optimalnogo upravleniya, Mir, M., 1972, 544 pp.
[3] Okhotsimskii D.E., Eneev T.M., “Nekotorye variatsionnye zadachi, svyazannye s zapuskom iskusstvennogo sputnika Zemli”, Uspekhi fiz. nauk, 63:1 (1957), 5–32 | DOI | MR
[4] Afanasev V.N., Kolmanovskii V.B., Nosov V.R., Matematicheskaya teoriya konstruirovaniya sistem upravleniya, Vysshaya shkola, M., 2003, 614 pp.
[5] Isaev V.K., “Printsip maksimuma L.S. Pontryagina i optimalnoe programmirovanie tyagi raket”, Avtomatika i telemekhanika, 22:8 (1961), 986–1001
[6] Reshmin S.A., “Optimalnoe upravlenie siloi tyagi pri skorostnom manevrirovanii v usloviyakh sukhogo treniya”, Prikl. matematika i mekhanika, 87:8 (2023), 604–617 | DOI
[7] Reshmin S.A., Bektybaeva M.T., “Effektivnoe upravlenie napravleniem tyagi pri skorostnom manevre v ploskosti”, Vestn. Rossiiskogo un-ta druzhby narodov. Ser.: Inzhenernye issledovaniya, 24:3 (2023), 233–240 | DOI
[8] Pontryagin L.S., Boltyanskii V.G., Gamkrelidze R.V., Mischenko E.F., Matematicheskaya teoriya optimalnykh protsessov, Nauka, M., 1983, 392 pp. | MR
[9] Reshmin S.A., Bektybaeva M.T., “Accounting for phase limitations during intense acceleration of a mobile robot and its motion in drift mode”, Dokl. Math., 109:1 (2024), 38–46 | DOI | MR
[10] Gordan A.L., “Centaur D-1A guidance/software system”, Proc. Annual Rocky Mountain Guidance and Control Conference (Keystone, Colorado, February 4–8), 1984, 17
[11] Kim K.S., Park J.W., Tahk M.J., Choi H.L., “A PEG-based ascending guidance algorithm for ramjet-powered vehicles”, International Congress of the Aeronautical Sciences, International Council of Aeronautical Sciences, 2012, 7 pp.
[12] Barsegyan V.R., “Zadachi granichnogo upravleniya i optimalnogo upravleniya kolebaniyami struny s mnogotochechnymi promezhutochnymi usloviyami na funktsii sostoyaniya”, Tr. In-ta matematiki i mekhaniki UrO RAN, 28:3 (2022), 38–52 | DOI | Zbl
[13] Aseev S.M., Kryazhimskii A.V., “Ob odnom klasse zadach optimalnogo upravleniya, voznikayuschikh v matematicheskoi ekonomike”, Tr. MIAN, 262 (2008), 16–31 | Zbl
[14] Aseev S.M., Kryazhimskii A.V., Tarasev A.M., “Printsip maksimuma Pontryagina i usloviya transversalnosti dlya odnoi zadachi optimalnogo upravleniya na beskonechnom intervale”, Tr. MIAN, 233 (2001), 71–88 | DOI | Zbl
[15] Roitenberg Ya.N., Avtomaticheskoe upravlenie, Nauka, M., 1971, 396 pp.