Control of acceleration of a dynamic object by the modified linear tangent law in the presence of a state constraint
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 30 (2024) no. 2, pp. 152-163
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

The paper is devoted to trajectory optimization for an inertial object moving in a plane with thrust bounded in absolute value in the presence of external forces. The aim is to maximize the longitudinal terminal velocity with the state constraint satisfied at each time to avoid a lateral collision with an obstacle. The linear tangent law is used as the basis for an algorithm that controls the direction of the thrust. Conditions for the existence of a solution are studied. Constraints on the initial lateral velocity and the time of the motion of the object are obtained. Since the linear tangent law violates the constraint for some motion times, a modified control law is proposed. A transcendental equation is obtained to find a critical value of time above which an undesired collision occurs. The corresponding conjecture is formulated, which allows us to eliminate the ambiguity that arises during the solution process. A method for solving the problem is presented and confirmed by numerical calculations.
Keywords: trajectory optimization, state constraint, velocity maximization, linear tangent law.
@article{TIMM_2024_30_2_a10,
     author = {S. A. Reshmin and M. T. Bektybaeva},
     title = {Control of acceleration of a dynamic object by the modified linear tangent law in the presence of a state constraint},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {152--163},
     year = {2024},
     volume = {30},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2024_30_2_a10/}
}
TY  - JOUR
AU  - S. A. Reshmin
AU  - M. T. Bektybaeva
TI  - Control of acceleration of a dynamic object by the modified linear tangent law in the presence of a state constraint
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2024
SP  - 152
EP  - 163
VL  - 30
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TIMM_2024_30_2_a10/
LA  - ru
ID  - TIMM_2024_30_2_a10
ER  - 
%0 Journal Article
%A S. A. Reshmin
%A M. T. Bektybaeva
%T Control of acceleration of a dynamic object by the modified linear tangent law in the presence of a state constraint
%J Trudy Instituta matematiki i mehaniki
%D 2024
%P 152-163
%V 30
%N 2
%U http://geodesic.mathdoc.fr/item/TIMM_2024_30_2_a10/
%G ru
%F TIMM_2024_30_2_a10
S. A. Reshmin; M. T. Bektybaeva. Control of acceleration of a dynamic object by the modified linear tangent law in the presence of a state constraint. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 30 (2024) no. 2, pp. 152-163. http://geodesic.mathdoc.fr/item/TIMM_2024_30_2_a10/

[1] Perkins F.M., Derivation of linear-tangent steering laws, Air Force Report No. SSD-TR66-211. Nov.1966 | DOI

[2] Braison A., Kho Yu-shi, Prikladnaya teoriya optimalnogo upravleniya, Mir, M., 1972, 544 pp.

[3] Okhotsimskii D.E., Eneev T.M., “Nekotorye variatsionnye zadachi, svyazannye s zapuskom iskusstvennogo sputnika Zemli”, Uspekhi fiz. nauk, 63:1 (1957), 5–32 | DOI | MR

[4] Afanasev V.N., Kolmanovskii V.B., Nosov V.R., Matematicheskaya teoriya konstruirovaniya sistem upravleniya, Vysshaya shkola, M., 2003, 614 pp.

[5] Isaev V.K., “Printsip maksimuma L.S. Pontryagina i optimalnoe programmirovanie tyagi raket”, Avtomatika i telemekhanika, 22:8 (1961), 986–1001

[6] Reshmin S.A., “Optimalnoe upravlenie siloi tyagi pri skorostnom manevrirovanii v usloviyakh sukhogo treniya”, Prikl. matematika i mekhanika, 87:8 (2023), 604–617 | DOI

[7] Reshmin S.A., Bektybaeva M.T., “Effektivnoe upravlenie napravleniem tyagi pri skorostnom manevre v ploskosti”, Vestn. Rossiiskogo un-ta druzhby narodov. Ser.: Inzhenernye issledovaniya, 24:3 (2023), 233–240 | DOI

[8] Pontryagin L.S., Boltyanskii V.G., Gamkrelidze R.V., Mischenko E.F., Matematicheskaya teoriya optimalnykh protsessov, Nauka, M., 1983, 392 pp. | MR

[9] Reshmin S.A., Bektybaeva M.T., “Accounting for phase limitations during intense acceleration of a mobile robot and its motion in drift mode”, Dokl. Math., 109:1 (2024), 38–46 | DOI | MR

[10] Gordan A.L., “Centaur D-1A guidance/software system”, Proc. Annual Rocky Mountain Guidance and Control Conference (Keystone, Colorado, February 4–8), 1984, 17

[11] Kim K.S., Park J.W., Tahk M.J., Choi H.L., “A PEG-based ascending guidance algorithm for ramjet-powered vehicles”, International Congress of the Aeronautical Sciences, International Council of Aeronautical Sciences, 2012, 7 pp.

[12] Barsegyan V.R., “Zadachi granichnogo upravleniya i optimalnogo upravleniya kolebaniyami struny s mnogotochechnymi promezhutochnymi usloviyami na funktsii sostoyaniya”, Tr. In-ta matematiki i mekhaniki UrO RAN, 28:3 (2022), 38–52 | DOI | Zbl

[13] Aseev S.M., Kryazhimskii A.V., “Ob odnom klasse zadach optimalnogo upravleniya, voznikayuschikh v matematicheskoi ekonomike”, Tr. MIAN, 262 (2008), 16–31 | Zbl

[14] Aseev S.M., Kryazhimskii A.V., Tarasev A.M., “Printsip maksimuma Pontryagina i usloviya transversalnosti dlya odnoi zadachi optimalnogo upravleniya na beskonechnom intervale”, Tr. MIAN, 233 (2001), 71–88 | DOI | Zbl

[15] Roitenberg Ya.N., Avtomaticheskoe upravlenie, Nauka, M., 1971, 396 pp.