@article{TIMM_2024_30_2_a1,
author = {A. S. Aseev and S. P. Samsonov},
title = {On the problem of optimal stimulation of demand},
journal = {Trudy Instituta matematiki i mehaniki},
pages = {23--38},
year = {2024},
volume = {30},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TIMM_2024_30_2_a1/}
}
A. S. Aseev; S. P. Samsonov. On the problem of optimal stimulation of demand. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 30 (2024) no. 2, pp. 23-38. http://geodesic.mathdoc.fr/item/TIMM_2024_30_2_a1/
[1] Ramsey F.P., “A mathematical theory of saving”, The Economic Journal, 38 (1928), 543–559 | DOI
[2] Barro R.Dzh., Sala-i-Martin Kh., Ekonomicheskii rost, BINOM. Laboratoriya znanii, M., 2010, 824 pp.
[3] Acemoglu D., Introduction to modern economic growth, Princeton Univ. Press, Princeton, NJ, 2008, 1008 pp.
[4] Carlson D.A., Haurie A.B., Leizarowitz A., Infinite horizon optimal control, Deterministic and stochastic systems, Springer-Verlag, Berlin, 1991, 332 pp. | DOI | MR | Zbl
[5] Aseev A.S., “Optimal economic growth problem”, J. Math. Sci., 276 (2023), 37–47 | DOI | MR | Zbl
[6] Kaldor N., “A model of trade cycle”, The Economic Journal, 50:197 (1940), 78–92 | DOI
[7] Aseev A.S., “Optimalnye statsionarnyi rezhimy v upravlyaemoi modeli biznes-tsikla Kaldora”, Mat. modelirovanie, 31:2 (2019), 33–47 | DOI | Zbl
[8] Aseev S.M., Kryazhimskii A.V., “Printsip maksimuma Pontryagina i zadachi optimalnogo ekonomicheskogo rosta”, Tr. MIAN, 257 (2007), 3–271
[9] Weitzman M.J., Income, wealth, and the maximum principle, Harvard University Press, Cambridge, MA, 2003, 358 pp.
[10] Seierstad A., Sydsæter K., Optimal control theory with economic applications, North-Holland, Amsterdam, 1987, 472 pp. | MR | Zbl
[11] Aseev S.M., Besov K.O., Kryazhimskii A.V., “Zadachi optimalnogo upravleniya na beskonechnom intervale vremeni v ekonomike”, Uspekhi mat. nauk, 67:2 (2012), 3–64 | DOI | MR | Zbl
[12] Aseev S.M., Veliov V.M., “Maximum principle for infinite-horizon optimal control problems under weak regularity assumptions”, Tr. In-ta matematiki i mekhaniki UrO RAN, 20:3 (2014), 41–57 | MR
[13] Pickenhain S., “Infinite horizon optimal control problems in the light of convex analysis in Hilbert spaces”, J. Set-Valued Var. Anal., 23:1 (2015), 169–189 | DOI | MR | Zbl
[14] Tauchnitz N., “The Pontryagin maximum principle for nonlinear optimal control problems with infinite horizon”, J. Optim. Theory Appl., 167:1 (2015), 27–48 | DOI | MR | Zbl
[15] Cannarsa P., Frankowska H., “Value function, relaxation, and transversality conditions in infinite horizon optimal control”, J. Math. Anal. Appl., 457 (2018), 1118–1217 | DOI | MR
[16] Ye J.J., “Nonsmooth maximum principle for infinite-horizon problems”, J. Optim. Theory Appl., 76:3 (1993), 485–500 | DOI | MR | Zbl
[17] Cesari L., Optimization — theory and applications, Problems with ordinary differential equations, Springer-Verlag, NY, 1983 | DOI | MR | Zbl
[18] Kolmogorov A.N., Fomin S.V., Elementy teorii funktsii i funktsionalnogo analiza, Nauka, Glavnaya redaktsiya fiz.-mat. lit., M., 1976, 544 pp. | MR
[19] Clarke F.H., Optimization and nonsmooth analysis, J. Wiley, NY, 1983, 308 pp. | MR | Zbl
[20] Filippov A.F., “O nekotorykh voprosakh teorii optimalnogo regulirovaniya”, Vestn. Moskov. universiteta, 1959, no. 2, 25–32 | Zbl
[21] Khartman F., Obyknovennye differentsialnyi uravneniya, Mir, M., 1970, 720 pp.