Questions of the structure of finite Hall quasifields
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 30 (2024) no. 1, pp. 128-141
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

The finite quasifields have been studied together with projective translation planes for more than a century. The identification of structural features and anomalous properties is an important step in solving the classification problem of finite quasifields. The article solves the structural problems for finite Hall quasifields. These are quasifields two-dimensional over the center such that all non-central elements are the roots of a unique quadratic equation. The automorphism group acts transitively on non-central elements. All Hall quasifields of the same order coordinatize one isomorphic translation plane, which is the Hall plane. The spread set method allows to present the multiplication rule as a linear transformation. The method is used to describe subfields, sub-quasifields, spectra, and automorphisms. An algorithm to calculate the number of pairwise non-isomorphic Hall quasifields of the same order is given. The covering and primitivity theorem by M. Cordero and V. Jha (2009) is clarified, with the primitive Hall quasifields counter-examples. The quasifields of order 16 covered by subfields of order 4 not contained in any Hall quasifield are presented. The examples also raise the questions for further investigation.
Keywords: quasifield, Hall quasifield, spread set, spectrum, right-primitive quasifield.
Mots-clés : automorphism
@article{TIMM_2024_30_1_a9,
     author = {O. V. Kravtsova and V. S. Loginova},
     title = {Questions of the structure of finite {Hall} quasifields},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {128--141},
     year = {2024},
     volume = {30},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2024_30_1_a9/}
}
TY  - JOUR
AU  - O. V. Kravtsova
AU  - V. S. Loginova
TI  - Questions of the structure of finite Hall quasifields
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2024
SP  - 128
EP  - 141
VL  - 30
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TIMM_2024_30_1_a9/
LA  - ru
ID  - TIMM_2024_30_1_a9
ER  - 
%0 Journal Article
%A O. V. Kravtsova
%A V. S. Loginova
%T Questions of the structure of finite Hall quasifields
%J Trudy Instituta matematiki i mehaniki
%D 2024
%P 128-141
%V 30
%N 1
%U http://geodesic.mathdoc.fr/item/TIMM_2024_30_1_a9/
%G ru
%F TIMM_2024_30_1_a9
O. V. Kravtsova; V. S. Loginova. Questions of the structure of finite Hall quasifields. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 30 (2024) no. 1, pp. 128-141. http://geodesic.mathdoc.fr/item/TIMM_2024_30_1_a9/

[1] Dickson L.E., “Linear algebras in which division is always uniquely possible”, Trans. Amer. Math. Soc., 7:3 (1906), 370–390 | DOI | MR

[2] Veblen O., Maclagan–Wedderburn J.H., “Non-Desarguesian and Non-Pascalian geometries”, Trans. Amer. Math. Soc., 8:3 (1907), 379–388 | DOI | MR

[3] Kholl M., Teoriya grupp, IL, M., 1962, 468 pp.

[4] Hughes D.R., Piper F.C., Projective planes, Springer-Verlag, NY Inc., 1973, 292 pp. | MR | Zbl

[5] Kurosh A.G., Lektsii po obschei algebre, Fizmatgiz, M., 1962, 396 pp. | MR

[6] Dickson L.E., “On finite algebras”, Nachr. Akad. Wiss. Göttingen, Math.-Phys. Kl., II (1905), 358–393 URL: http://eudml.org/doc/58621

[7] Zassenhaus H., “Uber endliche Fastkörper”, Abh. Math. Sem. Hamburg, 11 (1936), 187–220 | DOI | MR

[8] Johnson N.L., Jha V., Biliotti M., Handbook of finite translation planes, Chapman Hall/CRC, London; NY, 2007, 888 pp. | MR | Zbl

[9] Hall M., Jr., “Projective planes”, Trans. Amer. Math. Soc., 54 (1943), 229–277 | DOI | MR | Zbl

[10] Biliotti M., Jha V., Johnson N.L., Foundations of translation planes, Marcel Dekker Inc., NY; Basel, 2001, 542 pp. | MR | Zbl

[11] Nesbitt–Stobert S.B., Garner C.W.L., “A direct proof that all Hall planes of the same finite order are isomorphic”, Riv. Mat. Univ. Parma, 12:4 (1986), 241–247 | MR | Zbl

[12] Levchuk V.M., Kravtsova O.V., “Problems on structure of finite quasifields and projective translation planes”, Lobachevskii J. Math., 38:4 (2017), 688–698 | DOI | MR | Zbl

[13] Kravtsova O.V., Skok D.S., “Metod regulyarnogo mnozhestva postroeniya konechnykh kvazipolei”, Tr. I-ta matematiki i mekhaniki UrO RAN, 28:1 (2022), 164–181 | DOI | MR

[14] Mäurer H., “Die affine Projektivitätengruppe der Hallebenen [The affine group of projectivities of the Hall planes]”, Aequationes Math., 32 (1987), 271–273 | DOI | MR | Zbl

[15] Wene G.P., “On the multiplicative structure of finite division rings”, Aequationes Math., 41 (1991), 222–233 | DOI | MR | Zbl

[16] Hentzel I.R., Rúa I.F., “Primitivity of finite semifields with 64 and 81 elements”, International J. Algebra and Computation, 17:7 (2007), 1411–1429 | DOI | MR | Zbl

[17] Cordero M., Jha V., “On the multiplicative structure of quasifields and semifields: cyclic and acyclic loops”, Note di Matematica, 29:1 (2009), 45–59 | DOI | MR | Zbl

[18] Nagy G.P., “Doubly transitive sete of even permutations”, Bul. Acad. Ştiinţe. Repub. Mold. Mat., 2016, no. 1, 78–82 | MR | Zbl

[19] Hiramine Y., “A generalization of Hall quasifields”, Osaka J. Math., 22 (1985), 61–69 | DOI | MR | Zbl

[20] Dempwolff U., Reifart A., “The Classification of the translation planes of order 16”, Fachbereich Mathematik: Preprint, 42, Universität Stuttgart, 1982 | MR

[21] Levchuk V.M., Shtukkert P.K., “Problems on structure for quasifields of orders 16 and 32”, J. Sib. Federal University. Ser. Mathematics Physics, 7:3 (2014), 362–372 | Zbl