Normalizers of Sylow subgroups in symplectic and orthogonal groups over finite fields of odd characteristic
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 30 (2024) no. 1, pp. 61-69
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

The paper identifies the normalizers of Sylow $r$-subgroups for an odd prime $r$ in symplectic and orthogonal groups (both simple and complete) over fields of odd characteristic different from $r$. The motivation for this study comes from the fundamental role of $r$-subgroups and their normalizers ($r$-local subgroups) in the theory of finite groups and the incomplete description of Sylow subgroup normalizers in simple groups as of today. The findings of the work bring us closer to a full description of the normalizers of Sylow $r$-subgroups in classical groups. The only case that remains open is for odd $r$ in symplectic and orthogonal groups over a field of characteristic $2$.
Keywords: symplectic groups, orthogonal groups, normalizers of Sylow subgroups, finite simple groups.
@article{TIMM_2024_30_1_a4,
     author = {A. S. Vasil'ev},
     title = {Normalizers of {Sylow} subgroups in symplectic and orthogonal groups over finite fields of odd characteristic},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {61--69},
     year = {2024},
     volume = {30},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2024_30_1_a4/}
}
TY  - JOUR
AU  - A. S. Vasil'ev
TI  - Normalizers of Sylow subgroups in symplectic and orthogonal groups over finite fields of odd characteristic
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2024
SP  - 61
EP  - 69
VL  - 30
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TIMM_2024_30_1_a4/
LA  - ru
ID  - TIMM_2024_30_1_a4
ER  - 
%0 Journal Article
%A A. S. Vasil'ev
%T Normalizers of Sylow subgroups in symplectic and orthogonal groups over finite fields of odd characteristic
%J Trudy Instituta matematiki i mehaniki
%D 2024
%P 61-69
%V 30
%N 1
%U http://geodesic.mathdoc.fr/item/TIMM_2024_30_1_a4/
%G ru
%F TIMM_2024_30_1_a4
A. S. Vasil'ev. Normalizers of Sylow subgroups in symplectic and orthogonal groups over finite fields of odd characteristic. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 30 (2024) no. 1, pp. 61-69. http://geodesic.mathdoc.fr/item/TIMM_2024_30_1_a4/

[1] Carter R., Fong P., “The Sylow 2-subgroups of the finite classical group”, J. Algebra, 1 (1964), 131–151 | DOI | MR

[2] Kondratev A.S., Mazurov V.D., “2-signalizatory konechnykh prostykh grupp”, Algebra i logika, 42:5 (2003), 594–623 | DOI | MR | Zbl

[3] Kondratev A.S., “Normalizatory silovskikh 2-podgrupp v konechnykh prostykh gruppakh”, Mat. zametki, 78:3 (2005), 338–346 | DOI | MR | Zbl

[4] Vasilev A.S., “Normalizatory silovskikh podgrupp v lineinykh i unitarnykh konechnykh gruppakh”, Algebra i logika, 59:1 (2020), 3–26 | DOI | MR | Zbl

[5] An J., “Weights for classical groups”, Trans. Am. Math. Soc., 342:1 (1994), 1–42 | DOI | MR | Zbl

[6] Kleidman P. B., Liebeck M., The subgroups structure of finite classical groups, Cambridge Univ. Press, Cambridge, 1990 | DOI | MR

[7] Alperin J.L., Fong P., “Weights for symmetric and general linear groups”, J. Algebra, 131:1 (1990), 2–22 | DOI | MR | Zbl

[8] Gross F., “Odd order Hall subgroups of the classical linear groups”, Mathematische Zeitschrift, 220 (1995), 317–336 | DOI | MR | Zbl

[9] Griess R., “Automorphisms of extra special groups and nonvanishing degree 2 cohomology”, Pacif. J. Math., 48 (1973), 403–411 | DOI | MR

[10] Revin D.O., “Svoistvo $D_\pi$ konechnykh grupp v sluchae $2 \notin \pi$”, Tr. In-ta matematiki i mekhaniki UrO RAN, 13:1 (2007), 166–182 | MR | Zbl

[11] Weir A.J., “Sylow p-subgroups of the classical groups over finite fields with characteristic prime to p”, Proc. Amer. Math. Soc., 6:4 (1955), 529–533 | DOI | MR | Zbl