Voir la notice du chapitre de livre
Mots-clés : Poisson's equation
@article{TIMM_2024_30_1_a3,
author = {L. S. Bryndin and V. A. Belyaev},
title = {Collocation methods with fourth degree polynomials on triangular grids and their application to the calculation of bending of round plates with holes},
journal = {Trudy Instituta matematiki i mehaniki},
pages = {43--60},
year = {2024},
volume = {30},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TIMM_2024_30_1_a3/}
}
TY - JOUR AU - L. S. Bryndin AU - V. A. Belyaev TI - Collocation methods with fourth degree polynomials on triangular grids and their application to the calculation of bending of round plates with holes JO - Trudy Instituta matematiki i mehaniki PY - 2024 SP - 43 EP - 60 VL - 30 IS - 1 UR - http://geodesic.mathdoc.fr/item/TIMM_2024_30_1_a3/ LA - ru ID - TIMM_2024_30_1_a3 ER -
%0 Journal Article %A L. S. Bryndin %A V. A. Belyaev %T Collocation methods with fourth degree polynomials on triangular grids and their application to the calculation of bending of round plates with holes %J Trudy Instituta matematiki i mehaniki %D 2024 %P 43-60 %V 30 %N 1 %U http://geodesic.mathdoc.fr/item/TIMM_2024_30_1_a3/ %G ru %F TIMM_2024_30_1_a3
L. S. Bryndin; V. A. Belyaev. Collocation methods with fourth degree polynomials on triangular grids and their application to the calculation of bending of round plates with holes. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 30 (2024) no. 1, pp. 43-60. http://geodesic.mathdoc.fr/item/TIMM_2024_30_1_a3/
[1] Belyaev V.A., “Ob effektivnoi realizatsii i vozmozhnostyakh metoda kollokatsii i naimenshikh kvadratov resheniya ellipticheskikh uravnenii vtorogo poryadka”, Vychisl. metody i programmirovanie, 22:3 (2021), 211–229 | DOI
[2] Belyaev V.A., “Reshenie uravneniya Puassona s osobennostyami metodom kollokatsii i naimenshikh kvadratov”, Sib. zhurn. vychisl. matematiki, 23:3 (2020), 249–263 | DOI
[3] Reddy J.N., Mechanics of laminated composite plates and shells: theory and analysis, 2nd edn., CRC Press, Boca Raton; London; NY.; Washington, D.C., 2004, 858 pp. | DOI
[4] Timoshenko S.P., Voinovskii-Kriger S., Plastiny i obolochki, Fizmatgiz, M., 1966, 625 pp.
[5] Lee W.M., Chen J.T., “Free vibration analysis of a circular plate with multiple circular holes by using indirect BIEM and addition theorem”, J. Appl. Mech., 78 (2011), 011015, 10 pp. | DOI | MR
[6] Schillinger D., Evans J.A., Reali A., Scott M.A., Hughes T.J.R., “Isogeometric collocation: Cost comparison with Galerkin methods and extension to adaptive hierarchical NURBS discretizations”, Comput. Methods Appl. Mech. Eng., 267 (2013), 170–232 | DOI | MR | Zbl
[7] Kireev V.A., “Metod kollokatsii s bikubicheskim ermitovym bazisom v oblasti s krivolineinoi granitsei”, Vestn. SibGAU im. akademika M. F. Reshetneva, 2014, no. 3(55), 73–77
[8] Shao W., Wu X., Chen S., “Chebyshev tau meshless method based on the integration-differentiation for biharmonic-type equations on irregular domain”, Eng. Anal. Bound. Elem., 36:12 (2012), 1787–1798 | DOI | MR | Zbl
[9] Belyaev V.A., Bryndin L.S., Golushko S.K., Semisalov B.V., Shapeev V.P., “H-, p- i hp-varianty metoda kollokatsii i naimenshikh kvadratov dlya resheniya kraevykh zadach dlya bigarmonicheskogo uravneniya v neregulyarnykh oblastyakh i ikh prilozheniya”, Zhurn. vychisl. matematiki i mat. fiziki, 62:4 (2022), 531–552 | DOI | Zbl
[10] Mai-Duy N., See H., Tran-Cong T., “A spectral collocation technique based on integrated Chebyshev polynomials for biharmonic problems in irregular domains”, Appl. Math. Model., 33:1 (2009), 284–299 | DOI | MR | Zbl
[11] Semisalov B.V., “Bystryi nelokalnyi algoritm resheniya kraevykh zadach Neimana — Dirikhle s kontrolem pogreshnosti”, Vychisl. metody programmirovanie, 17:4 (2016), 500–522
[12] Katsikadelis Dzh.T., Granichnye elementy: teoriya i prilozheniya, Izd-vo Assotsiatsii stroitelnykh vuzov, M., 2007, 348 pp.
[13] Drozdov G.M., Shapeev V.P., “CAS application to the construction of high-order difference schemes for solving Poisson equation”, Lect. Notes Comput. Sci., 8660, 2014, 99–110 | DOI | Zbl
[14] Shao W., Wu X., “An effective Chebyshev tau meshless domain decomposition method based on the integration-differentiation for solving fourth order equations”, Appl. Math. Model., 39:9 (2015), 2554–2569 | DOI | MR | Zbl
[15] Sleptsov A.G., Shokin Yu.I., “Adaptivnyi proektsionno-setochnyi metod dlya ellipticheskikh zadach”, Zhurn. vychisl. matematiki i mat. fiziki, 37:5 (1997), 572–586 | MR | Zbl
[16] Belyaev V.V., Shapeev V.P., “Metod kollokatsii i naimenshikh kvadratov na adaptivnykh setkakh v oblasti s krivolineinoi granitsei”, Vychisl. tekhnologii, 5:4 (2000), 13–21 | MR | Zbl
[17] Isaev V.I., Shapeev V.P., Eremin S.A., “Issledovanie svoistv metoda kollokatsii i naimenshikh kvadratov resheniya kraevykh zadach dlya uravneniya Puassona i uravnenii Nave — Stoksa”, Vychisl. tekhnologii, 12:3 (2007), 53–70 | Zbl
[18] Golushko S.K., Idimeshev S.V., Shapeev V.P., “Metod kollokatsii i naimenshikh nevyazok v prilozhenii k zadacham mekhaniki izotropnykh plastin”, Vychisl. tekhnologii, 18:6 (2013), 31–43
[19] Idimeshev S.V., Modifitsirovannyi metod kollokatsii i naimenshikh nevyazok i ego prilozhenie v mekhanike mnogosloinykh kompozitnykh balok i plastin, dis. \ldots kand. fiz.-mat. nauk, IVT SO RAN, Novosibirsk, 2016, 179 pp.
[20] Garcia O. Fancello E.A., de Barcellos C.S., Duarte C.A., “Hp-clouds in Mindlin's thick plate model”, Int. J. Numer. Methods Eng., 47:8 (2000), 1367–1522 | 3.0.CO;2-9 class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI
[21] Tiago C., Leitão V.M.A., “Eliminating shear-locking in meshless methods: a critical overview and a new framework for structural theories”, Advances in meshfree techniques, Computational methods in applied sciences, 5, 2007, 123–147 | DOI | MR
[22] Ike C.C., “Mathematical solutions for the flexural analysis of Mindlin's first order shear deformable circular plates”, Math. Models in Eng., 4:2 (2018), 50–72 | DOI
[23] Davis T.A., “Algorithm 915, SuiteSparseQR: Multifrontal multithreaded rank-revealing sparse QR factorization”, ACM Trans. Math. Softw., 38:1 (2011), 8:1–8:22 | DOI | MR | Zbl
[24] Shapeev V.P., Shapeev A.V., “Reshenie ellipticheskikh zadach s osobennostyami po skhemam vysokogo poryadka approksimatsii”, Vychisl. tekhnologii, 11:ch. 2, spetsialnyi vypusk (2006), 84–91 | Zbl