Collocation methods with fourth degree polynomials on triangular grids and their application to the calculation of bending of round plates with holes
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 30 (2024) no. 1, pp. 43-60
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

A new collocation method ($h$-CM$_4$) is developed for the numerical solution of two-dimensional elliptic problems with second-order highest derivatives. Fourth-degree polynomials on triangular cells of a grid generated by Gmsh are used as an approximation. Unknown coefficients of the polynomial decomposition are determined from the solution of a system of linear algebraic equations (SLAE) consisting of collocation equations, matching conditions, and boundary conditions. In the $h$-CM$_4$, the SLAE is quadratic in contrast to published versions of the least-squares collocation method, where similar equations are written, but the SLAE is overdetermined. This leads to an increase in computation time and the need to search for special values of the weight coefficients multiplying the equations of the approximate problem. The fourth order of convergence of the $h$-CM$_4$ is established numerically on smooth test solutions of the Poisson's equation and of a system of partial differential equations (PDEs) arising in the calculation of bending within the Reissner–Mindlin plate theory (RMPT). The possibility of calculation of the stress–strain state (SSS) of sufficiently thin plates in the RMPT is demonstrated. It is shown that in order to solve the PDE system describing the plate bending within the Kirchhoff–Love plate theory (KLPT) in a mixed formulation, it is necessary to increase the number of equations of the approximate problem in the $h$-CM$_4$. Thus, the approximation is reduced to the construction of a new version of the least-squares collocation method ($h$-LSCM$_4$), whose convergence order is no worse than the third. The SSS of round plates with holes is analyzed depending on the thickness of a plate in the RMPT and KLPT as well as on eccentricity in the case of one hole. Adaptive grids are used to improve accuracy in problems with large gradients and limited smoothness of the solution, which resulted in improving the order of convergence in the latter case. The application of adaptive grids expands the capabilities of the $h$-CM$_4$ and $h$-LSCM$_4$ compared to previous versions of the least-squares collocation method, which is confirmed by numerical examples.
Keywords: collocation method, Reissner–Mindlin theory, Kirchhoff–Love theory, plate bending.
Mots-clés : Poisson's equation
@article{TIMM_2024_30_1_a3,
     author = {L. S. Bryndin and V. A. Belyaev},
     title = {Collocation methods with fourth degree polynomials on triangular grids and their application to the calculation of bending of round plates with holes},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {43--60},
     year = {2024},
     volume = {30},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2024_30_1_a3/}
}
TY  - JOUR
AU  - L. S. Bryndin
AU  - V. A. Belyaev
TI  - Collocation methods with fourth degree polynomials on triangular grids and their application to the calculation of bending of round plates with holes
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2024
SP  - 43
EP  - 60
VL  - 30
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TIMM_2024_30_1_a3/
LA  - ru
ID  - TIMM_2024_30_1_a3
ER  - 
%0 Journal Article
%A L. S. Bryndin
%A V. A. Belyaev
%T Collocation methods with fourth degree polynomials on triangular grids and their application to the calculation of bending of round plates with holes
%J Trudy Instituta matematiki i mehaniki
%D 2024
%P 43-60
%V 30
%N 1
%U http://geodesic.mathdoc.fr/item/TIMM_2024_30_1_a3/
%G ru
%F TIMM_2024_30_1_a3
L. S. Bryndin; V. A. Belyaev. Collocation methods with fourth degree polynomials on triangular grids and their application to the calculation of bending of round plates with holes. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 30 (2024) no. 1, pp. 43-60. http://geodesic.mathdoc.fr/item/TIMM_2024_30_1_a3/

[1] Belyaev V.A., “Ob effektivnoi realizatsii i vozmozhnostyakh metoda kollokatsii i naimenshikh kvadratov resheniya ellipticheskikh uravnenii vtorogo poryadka”, Vychisl. metody i programmirovanie, 22:3 (2021), 211–229 | DOI

[2] Belyaev V.A., “Reshenie uravneniya Puassona s osobennostyami metodom kollokatsii i naimenshikh kvadratov”, Sib. zhurn. vychisl. matematiki, 23:3 (2020), 249–263 | DOI

[3] Reddy J.N., Mechanics of laminated composite plates and shells: theory and analysis, 2nd edn., CRC Press, Boca Raton; London; NY.; Washington, D.C., 2004, 858 pp. | DOI

[4] Timoshenko S.P., Voinovskii-Kriger S., Plastiny i obolochki, Fizmatgiz, M., 1966, 625 pp.

[5] Lee W.M., Chen J.T., “Free vibration analysis of a circular plate with multiple circular holes by using indirect BIEM and addition theorem”, J. Appl. Mech., 78 (2011), 011015, 10 pp. | DOI | MR

[6] Schillinger D., Evans J.A., Reali A., Scott M.A., Hughes T.J.R., “Isogeometric collocation: Cost comparison with Galerkin methods and extension to adaptive hierarchical NURBS discretizations”, Comput. Methods Appl. Mech. Eng., 267 (2013), 170–232 | DOI | MR | Zbl

[7] Kireev V.A., “Metod kollokatsii s bikubicheskim ermitovym bazisom v oblasti s krivolineinoi granitsei”, Vestn. SibGAU im. akademika M. F. Reshetneva, 2014, no. 3(55), 73–77

[8] Shao W., Wu X., Chen S., “Chebyshev tau meshless method based on the integration-differentiation for biharmonic-type equations on irregular domain”, Eng. Anal. Bound. Elem., 36:12 (2012), 1787–1798 | DOI | MR | Zbl

[9] Belyaev V.A., Bryndin L.S., Golushko S.K., Semisalov B.V., Shapeev V.P., “H-, p- i hp-varianty metoda kollokatsii i naimenshikh kvadratov dlya resheniya kraevykh zadach dlya bigarmonicheskogo uravneniya v neregulyarnykh oblastyakh i ikh prilozheniya”, Zhurn. vychisl. matematiki i mat. fiziki, 62:4 (2022), 531–552 | DOI | Zbl

[10] Mai-Duy N., See H., Tran-Cong T., “A spectral collocation technique based on integrated Chebyshev polynomials for biharmonic problems in irregular domains”, Appl. Math. Model., 33:1 (2009), 284–299 | DOI | MR | Zbl

[11] Semisalov B.V., “Bystryi nelokalnyi algoritm resheniya kraevykh zadach Neimana — Dirikhle s kontrolem pogreshnosti”, Vychisl. metody programmirovanie, 17:4 (2016), 500–522

[12] Katsikadelis Dzh.T., Granichnye elementy: teoriya i prilozheniya, Izd-vo Assotsiatsii stroitelnykh vuzov, M., 2007, 348 pp.

[13] Drozdov G.M., Shapeev V.P., “CAS application to the construction of high-order difference schemes for solving Poisson equation”, Lect. Notes Comput. Sci., 8660, 2014, 99–110 | DOI | Zbl

[14] Shao W., Wu X., “An effective Chebyshev tau meshless domain decomposition method based on the integration-differentiation for solving fourth order equations”, Appl. Math. Model., 39:9 (2015), 2554–2569 | DOI | MR | Zbl

[15] Sleptsov A.G., Shokin Yu.I., “Adaptivnyi proektsionno-setochnyi metod dlya ellipticheskikh zadach”, Zhurn. vychisl. matematiki i mat. fiziki, 37:5 (1997), 572–586 | MR | Zbl

[16] Belyaev V.V., Shapeev V.P., “Metod kollokatsii i naimenshikh kvadratov na adaptivnykh setkakh v oblasti s krivolineinoi granitsei”, Vychisl. tekhnologii, 5:4 (2000), 13–21 | MR | Zbl

[17] Isaev V.I., Shapeev V.P., Eremin S.A., “Issledovanie svoistv metoda kollokatsii i naimenshikh kvadratov resheniya kraevykh zadach dlya uravneniya Puassona i uravnenii Nave — Stoksa”, Vychisl. tekhnologii, 12:3 (2007), 53–70 | Zbl

[18] Golushko S.K., Idimeshev S.V., Shapeev V.P., “Metod kollokatsii i naimenshikh nevyazok v prilozhenii k zadacham mekhaniki izotropnykh plastin”, Vychisl. tekhnologii, 18:6 (2013), 31–43

[19] Idimeshev S.V., Modifitsirovannyi metod kollokatsii i naimenshikh nevyazok i ego prilozhenie v mekhanike mnogosloinykh kompozitnykh balok i plastin, dis. \ldots kand. fiz.-mat. nauk, IVT SO RAN, Novosibirsk, 2016, 179 pp.

[20] Garcia O. Fancello E.A., de Barcellos C.S., Duarte C.A., “Hp-clouds in Mindlin's thick plate model”, Int. J. Numer. Methods Eng., 47:8 (2000), 1367–1522 | 3.0.CO;2-9 class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI

[21] Tiago C., Leitão V.M.A., “Eliminating shear-locking in meshless methods: a critical overview and a new framework for structural theories”, Advances in meshfree techniques, Computational methods in applied sciences, 5, 2007, 123–147 | DOI | MR

[22] Ike C.C., “Mathematical solutions for the flexural analysis of Mindlin's first order shear deformable circular plates”, Math. Models in Eng., 4:2 (2018), 50–72 | DOI

[23] Davis T.A., “Algorithm 915, SuiteSparseQR: Multifrontal multithreaded rank-revealing sparse QR factorization”, ACM Trans. Math. Softw., 38:1 (2011), 8:1–8:22 | DOI | MR | Zbl

[24] Shapeev V.P., Shapeev A.V., “Reshenie ellipticheskikh zadach s osobennostyami po skhemam vysokogo poryadka approksimatsii”, Vychisl. tekhnologii, 11:ch. 2, spetsialnyi vypusk (2006), 84–91 | Zbl