2023 Ural workshop on group theory and combinatorics
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 30 (2024) no. 1, pp. 284-293 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

A review of the main events of the 2023 Ural Workshop on Group Theory and Combinatorics, held online during the period 21 to 27 August 2023, is presented, and a list of open problems with comments is given. Open problems were formulated by the participants at the Open Problems Session held on August 27, 2023.
Keywords: power graph, enhanced power graph, independence graph of a group, rank graph of a group, finite group, isomorphism of groups, average element order, deficient element, locally finite group, distance-regular graph, Krein graph, strongly regular graph, Gruenberg–Kegel graph (prime graph), almost simple group, Cayley graph, edge-transitive graph, normal cover of a graph, $2$-arc-transitive graph, semisymmetric graph, complete class of groups, Baer–Suzuki width, symmetric boundary of a class of groups.
Mots-clés : $\pi$-solvable group, simple group, solvable group, clique graph
@article{TIMM_2024_30_1_a21,
     author = {N. V. Maslova},
     title = {2023 {Ural} workshop on group theory and combinatorics},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {284--293},
     year = {2024},
     volume = {30},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2024_30_1_a21/}
}
TY  - JOUR
AU  - N. V. Maslova
TI  - 2023 Ural workshop on group theory and combinatorics
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2024
SP  - 284
EP  - 293
VL  - 30
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TIMM_2024_30_1_a21/
LA  - en
ID  - TIMM_2024_30_1_a21
ER  - 
%0 Journal Article
%A N. V. Maslova
%T 2023 Ural workshop on group theory and combinatorics
%J Trudy Instituta matematiki i mehaniki
%D 2024
%P 284-293
%V 30
%N 1
%U http://geodesic.mathdoc.fr/item/TIMM_2024_30_1_a21/
%G en
%F TIMM_2024_30_1_a21
N. V. Maslova. 2023 Ural workshop on group theory and combinatorics. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 30 (2024) no. 1, pp. 284-293. http://geodesic.mathdoc.fr/item/TIMM_2024_30_1_a21/

[1] 2023 Ural Workshop on Group Theory and Combinatorics, [e-resource], Available on: URL: http://2023uwgtc.imm.uran.ru

[2] N.N. Krasovskii Institute of Mathematics and Mechanics, [e-resource], Available on: URL: https://www.imm.uran.ru/eng

[3] Institute of Natural Sciences and Mathematics, Ural Federal University, Russia, [e-resource], Available on: URL: (in Russian) https://insma.urfu.ru/ru/

[4] Ural Mathematical Center, [e-resource], Available on: URL: https://umc.urfu.ru/en/

[5] Ural Seminar on Group Theory and Combinatorics, [e-resource], Available on: URL: https://http://uwgtc.imm.uran.ru

[6] Cameron P.J., Maslova N.V., “Criterion of unrecognizability of a finite group by its Gruenberg–Kegel graph”, J. Algebra, 607:part A (2022), 186–213 | DOI | MR | Zbl

[7] Freedman S.D., Lucchini A., Nemmi D., Roney-Dougal C.M., “Finite groups satisfying the independence property”, International Journal of Algebra and Computation, 33:3 (2023), 509–545 | DOI | MR | Zbl

[8] Biswas S., Cameron P.J., Das A., Dey H.K., On difference of enhanced power graph and power graph of a finite group. Available on:, arXiv: 2206.12422 | MR

[9] The Kourovka notebook. Unsolved problems in group theory, 20th ed., eds. V.D. Mazurov, E.I. Khukhro, Inst. Math. SO RAN Publ., Novosibirsk, 2022, 269 pp. URL: https://kourovka-notebook.org/

[10] Khukhro E.I., Moretó A., Zarrin M., “The average element order and the number of conjugacy classes of finite groups”, J. Algebra, 569:1 (2021), 1–11 | DOI | MR | Zbl

[11] Herzog M., Longobardi P., Maj M., “Another criterion for solvability of finite groups”, J. Algebra, 597 (2022), 1–23 | DOI | MR | Zbl

[12] Herzog M., Longobardi P., Maj M., “On groups with average element orders equal to the average order of the alternating group of degree $5$”, Glasnik Matematic̆ki, 58:2 (2023), 307–315 | DOI | MR

[13] Herzog M., Longobardi P., Maj M., “On $\mathcal{D}(j)$-groups with an element of order $p^{j+1}$”, in preparation

[14] Maslova N.V., Panshin V.V., Staroletov A.M., “On characterization by Gruenberg–Kegel graph of finite simple exceptional groups of Lie type”, European J. Math., 9 (2023), 78 | DOI | MR | Zbl

[15] Hawtin D.R., Praeger C.E., Zhou JX., “Using mixed dihedral groups to construct normal Cayley graphs and a new bipartite 2-arc-transitive graph which is not a Cayley graph”, J. Algebr. Comb., 2024, 14 pp. | DOI | MR

[16] Gordeev N., Grunewald F., Kunyavskii B., Plotkin E., “A description of Baer-Suzuki type of the solvable radical of a finite group”, J. Pure Appl. Algebra, 213:2 (2009), 250–258 | DOI | MR | Zbl

[17] H. Wielandt, “Zusammengesetzte Gruppen endlicher Ordnung”, Math. Inst. Univ. Tübingen, 1963/64, Mathematische Werke / Mathematical Works, Group Theory, Lecture Notes, 1, Walter de Gruyter and Co., Berlin, 1994, 607–655