On lattices associated with maximal graphical partitions
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 30 (2024) no. 1, pp. 32-42
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

The aim of this paper is to describe, for a given graphical partition $\lambda$ of weight $2m$ and rank $r$, the set of all maximal graphical partitions $\mu$ of weight $2m$ that dominate $\lambda$. To do this, it is enough to find the set of heads of such partitions. Theorem 1 states that, for any natural number $t$, the set of heads of all maximal graphical partitions $\mu$ of weight $2m$ and rank $t$ dominating $\lambda$ forms an interval of the integer partition lattice if such partitions $\mu$ of rank $t$ exist. Algorithms are also provided for finding the smallest and largest elements of this interval.
Keywords: lattice, Ferrers diagram, graph, maximal graphical partition.
Mots-clés : integer partition
@article{TIMM_2024_30_1_a2,
     author = {V. A. Baranskii and V. V. Zuev},
     title = {On lattices associated with maximal graphical partitions},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {32--42},
     year = {2024},
     volume = {30},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2024_30_1_a2/}
}
TY  - JOUR
AU  - V. A. Baranskii
AU  - V. V. Zuev
TI  - On lattices associated with maximal graphical partitions
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2024
SP  - 32
EP  - 42
VL  - 30
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TIMM_2024_30_1_a2/
LA  - ru
ID  - TIMM_2024_30_1_a2
ER  - 
%0 Journal Article
%A V. A. Baranskii
%A V. V. Zuev
%T On lattices associated with maximal graphical partitions
%J Trudy Instituta matematiki i mehaniki
%D 2024
%P 32-42
%V 30
%N 1
%U http://geodesic.mathdoc.fr/item/TIMM_2024_30_1_a2/
%G ru
%F TIMM_2024_30_1_a2
V. A. Baranskii; V. V. Zuev. On lattices associated with maximal graphical partitions. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 30 (2024) no. 1, pp. 32-42. http://geodesic.mathdoc.fr/item/TIMM_2024_30_1_a2/

[1] Andrews G.E, The theory of partitions, Cambridge University Press, Cambridge, 1976, 255 pp. | MR

[2] Brylawski T., “The lattice of integer partitions”, Discrete Math., 6:3 (1973), 201–219 | DOI | MR | Zbl

[3] Baranskii V.A., Senchonok T.A., “O maksimalnykh graficheskikh razbieniyakh, blizhaishikh k zadannomu graficheskomu razbieniyu”, Sib. elektron. mat. izv., 17 (2020), 338–363 | DOI | MR | Zbl

[4] Erdös P., Gallai T., “Graphs with given degree of vertices”, Math. Lapok., 11 (1960), 264–274

[5] Sierksma G., Hoogeven H., “Seven criteria for integer sequences being graphic”, J. Graph Theory, 15:2 (1991), 223–231 | DOI | MR | Zbl

[6] Kohnert A., “Dominance order and graphical partitions”, Elec. J. Comb., 11:1 (2004), 4, 17 pp. | DOI | MR

[7] Baranskii V.A., Senchonok T.A., “O maksimalnykh graficheskikh razbieniyakh”, Sib. elektron. mat. izv., 14 (2017), 112–124 | DOI | MR | Zbl

[8] Mahadev N.V.R., Peled U.N., Threshold graphs and related topics, Ser. Annals of Discr. Math., 56, North-Holland Publishing Co., Amsterdam, 1995, 542 pp. | MR