Questions of existence, absence, and uniqueness of a solution to one class of nonlinear integral equations on the whole line with an operator of Hammerstein–Stieltjes type
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 30 (2024) no. 1, pp. 249-269 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

The work is devoted to the study of questions of the existence, nonexistence, and uniqueness of a solution to one class of integral equations of the Hammerstein–Stieltjes type on the whole line with a concave and monotone nonlinearity. This class of equations has direct applications in various areas of modern natural science. In particular, depending on the representation of the corresponding kernel (or subkernel) and nonlinearity, equations of this kind are found in probability theory (Markov processes), $p$-adic string theory, the theory of radiative transfer in spectral lines, epidemiology, and the kinetic theory of gases and plasma. Under certain constraints on the kernel and on the nonlinearity of the equation, a constructive theorem for the existence of a continuous positive bounded solution is proved. A method for constructing an approximate solution is also outlined, the essence of which is to obtain a uniform estimate of the difference between the constructed solution and the corresponding successive approximations; the right-hand side of this estimate tends to zero at a rate of some geometric progression. In the case where the kernel of the equation satisfies the stochasticity condition, the absence of a nontrivial continuous bounded solution is proved. In the class of nonnegative nontrivial continuous bounded functions, a uniqueness theorem is also established. Using some geometric estimates for concave functions, the asymptotic behavior of the constructed solution at infinity is studied. At the end of the article, to illustrate the results obtained, practical examples of the kernel (subkernel) and nonlinearity of the equation under study are given.
Keywords: bounded solution, monotonicity, concavity, successive approximations.
Mots-clés : subkernel
@article{TIMM_2024_30_1_a18,
     author = {A. Kh. Khachatryan and Kh. A. Khachatryan and H. S. Petrosyan},
     title = {Questions of existence, absence, and uniqueness of a solution to one class of nonlinear integral equations on the whole line with an operator of {Hammerstein{\textendash}Stieltjes} type},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {249--269},
     year = {2024},
     volume = {30},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2024_30_1_a18/}
}
TY  - JOUR
AU  - A. Kh. Khachatryan
AU  - Kh. A. Khachatryan
AU  - H. S. Petrosyan
TI  - Questions of existence, absence, and uniqueness of a solution to one class of nonlinear integral equations on the whole line with an operator of Hammerstein–Stieltjes type
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2024
SP  - 249
EP  - 269
VL  - 30
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TIMM_2024_30_1_a18/
LA  - ru
ID  - TIMM_2024_30_1_a18
ER  - 
%0 Journal Article
%A A. Kh. Khachatryan
%A Kh. A. Khachatryan
%A H. S. Petrosyan
%T Questions of existence, absence, and uniqueness of a solution to one class of nonlinear integral equations on the whole line with an operator of Hammerstein–Stieltjes type
%J Trudy Instituta matematiki i mehaniki
%D 2024
%P 249-269
%V 30
%N 1
%U http://geodesic.mathdoc.fr/item/TIMM_2024_30_1_a18/
%G ru
%F TIMM_2024_30_1_a18
A. Kh. Khachatryan; Kh. A. Khachatryan; H. S. Petrosyan. Questions of existence, absence, and uniqueness of a solution to one class of nonlinear integral equations on the whole line with an operator of Hammerstein–Stieltjes type. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 30 (2024) no. 1, pp. 249-269. http://geodesic.mathdoc.fr/item/TIMM_2024_30_1_a18/

[1] Engibaryan N.B., “Uravneniya v svertkakh, soderzhaschie veroyatnostnye raspredeleniya”, Izv. RAN. Ser. matematicheskaya, 60:2 (1996), 21–48 | DOI | MR | Zbl

[2] Spitzer F., “The Wiener-Hopf equation, whose kernel is a probability density”, Duke Math. J., 24:3 (1957), 323–343 | DOI | MR

[3] Feller V., Vvedenie v teorii veroyatnostei i ee prilozheniya, v. 2, Mir, M., 1967 | MR

[4] Vladimirov V.S., Volovich Ya.I., “O nelineinom uravnenii dinamiki v teorii p-adicheskoi struny”, Teoret. i mat. fizika, 138:3 (2004), 355–368 | DOI | MR | Zbl

[5] Vladimirov V.S., “Ob uravnenii p-adicheskoi otkrytoi struny dlya skalyarnogo polya takhionov”, Izv. RAN. Ser. matematicheskaya, 69:3 (2005), 55–80 | DOI | MR | Zbl

[6] Vladimirov V.S., “O nelineinykh uravneniyakh p-adicheskikh otkrytykh, zamknutykh i otkryto-zamknutykh strun”, Teoret. i mat. fizika, 149:3 (2006), 354–367 | DOI | MR | Zbl

[7] Vladimirov V.S., “K voprosu nesuschestvovaniya reshenii uravnenii p-adicheskikh strun”, Teoret. i mat. fizika, 174:2 (2013), 208–215 | DOI | Zbl

[8] Zhukovskaya L.V., “Iteratsionnyi metod resheniya nelineinykh integralnykh uravnenii, opisyvayuschikh rollingovye resheniya v teorii strun”, Teoret. i mat. fizika, 146:3 (2006), 402–409 | DOI | MR

[9] Aref'eva I.Ya., Volovich I.V., “Cosmological daemon”, J. High Energy Physics, 2011:8 (2011), 102 | DOI | Zbl

[10] Khachatryan A.Kh., Khachatryan Kh.A., “O razreshimosti nelineinogo modelnogo uravneniya Boltsmana v zadache ploskoi udarnoi volny”, Teoret. i mat. fizika, 189:2 (2016), 239–255 | DOI | MR | Zbl

[11] Cercignani C., The Boltzmann equation and its applications, Springer-Verlag, NY, 1988, 455 pp. | DOI | MR | Zbl

[12] Kogan M.N., Dinamika razrezhennogo gaza, Nauka, M., 1967, 440 pp.

[13] Engibaryan N.B., “Ob odnoi zadache nelineinogo perenosa izlucheniya”, Astrofizika, 2:1 (1966), 31–36

[14] Atkinson C., Reuter G.E.H., “Deterministic epidemic waves”, Math. Proc. Cambridge Philos. Soc., 80:2 (1976), 315–330 | DOI | MR | Zbl

[15] Diekmann O., Kaper H.G., “On the bounded solutions of a nonlinear convolution equation”, Nonlinear Anal.: Theory, Method and Appl., 2:6 (1978), 721–737 | DOI | MR | Zbl

[16] Diekmann O., “Threshold and travelling waves for the geographical spread of infection”, J. Math. Biology, 6:2 (1978), 109–130 | DOI | MR | Zbl

[17] Law R., Dieckmann U., “Moment approximations of individual-based models”, The geometry of ecological interactions: Simplifying spatial complexity, eds. U. Dieckmann, R. Law, J.A.J. Metz, Cambridge Univ. Press, Cambridge, 2000, 252–270 | DOI

[18] Dieckmann U., Law R., “Relaxation projections and the method of moments”, The geometry of ecological interactions: Simplifying spatial complexity, eds. U. Dieckmann, R. Law, J.A.J. Metz, Cambridge Univ. Press, Cambridge, 2000, 412–455 | DOI

[19] Davydov A.A., Danchenko V.I., Zvyagin M.Yu., “Suschestvovanie i edinstvennost statsionarnogo raspredeleniya biologicheskogo soobschestva”, Osobennosti i prilozheniya, cb. st., Tr. MIAN, 267, 2009, 46–55 | Zbl

[20] Sargan J.D., “The distribution of wealth”, Econometrica, 25:4 (1957), 568–590 | DOI | MR | Zbl

[21] Khachatryan Kh.A., “O razreshimosti nekotorykh klassov nelineinykh integralnykh uravnenii v teorii $p$-adicheskoi struny”, Izv. RAN. Ser. matematicheskaya, 82:2 (2018), 172–193 | DOI | MR | Zbl

[22] Andriyan S.M., Kroyan A.K., Khachatryan Kh.A., “O razreshimosti odnogo klassa nelineinykh integralnykh uravnenii v p-adicheskoi teorii strun”, Ufim. mat. zhurn., 10:4 (2018), 12–23 | MR | Zbl

[23] Khachatryan Kh.A., “O razreshimosti odnoi granichnoi zadachi v $p$-adicheskoi teorii strun”, Tr. Mosk. mat. obschestva, 79:1 (2018), 117–132 | MR | Zbl

[24] Khachatryan Kh.A., “Suschestvovanie i edinstvennost resheniya odnoi granichnoi zadachi dlya integralnogo uravneniya svertki s monotonnoi nelineinostyu”, Izv. RAN. Ser. matematicheskaya, 84:4 (2020), 198–207 | DOI | MR | Zbl

[25] Petrosyan A.S., Khachatryan Kh.A., “O edinstvennosti resheniya odnogo klassa integralnykh uravnenii s summarno-raznostnym yadrom i s vypukloi nelineinostyu na polozhitelnoi polupryamoi”, Mat. zametki, 113:4 (2023), 529–543 | DOI | Zbl

[26] Khachatryan Kh.A., Petrosyan H.S., “On a class of integral equations with convex nonlinearity on semiaxis”, J. Contemp. Math. Anal., 55 (2020), 42–53 | DOI | MR | Zbl

[27] Khachatryan Kh.A., Petrosyan A.S., “O razreshimosti odnogo klassa nelineinykh integralnykh uravnenii Gammershteina — Stiltesa na vsei pryamoi”, Trudy MIAN, 308 (2020), 253–264 | DOI

[28] Zorich V.A., Matematicheskii analiz, Nauka, M., 1984, 640 pp.

[29] Kolmogorov A.N., Fomin S.V., Elementy teorii funktsii i funktsionalnogo analiza, Nauka, M., 1976, 544 pp. | MR

[30] Rudin W., Real and complex analysis, McGraw-Hill Book Company, NY; London; Hamburg, 1987, 483 pp. | MR | Zbl

[31] Rudin U., Funktsionalnyi analiz, Mir, M., 1975, 450 pp. | MR