Extensibility of solutions of non-autonomous systems of quadratic differential equations and their application in optimal control problems
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 30 (2024) no. 1, pp. 237-248 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

The paper considers minimization problems with a free right endpoint on a given time interval for control affine systems of differential equations. For this class of problems, we study an estimate for the number of different zeros of switching functions that determine the form of the corresponding optimal controls. This study is based on the analysis of non-autonomous linear systems of differential equations for switching functions and the corresponding auxiliary functions. Non-autonomous linear systems of third order are considered in detail. In these systems, the variables are changed so that the matrix of the system is transformed to a special upper triangular form. As a result, the number of zeros of the corresponding switching functions is estimated using the generalized Rolle's theorem. In the case of a linear system of third order, this transformation is carried out using functions that satisfy a non-autonomous system of quadratic differential equations of the same order. The paper presents two approaches that ensure the extensibility of solutions to a non-autonomous system of quadratic differential equations to a given time interval. The first approach uses differential inequalities and Chaplygin's comparison theorem. The second approach combines splitting a non-autonomous system of quadratic differential equations into subsystems of lower order and applying the quasi-positivity condition to these subsystems.
Keywords: switching function, generalized Rolle's theorem, non-autonomous system of quadratic differential equations, extensibility of solutions, condition for quasi-positivity of solutions.
@article{TIMM_2024_30_1_a17,
     author = {E. N. Khailov},
     title = {Extensibility of solutions of non-autonomous systems of quadratic differential equations and their application in optimal control problems},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {237--248},
     year = {2024},
     volume = {30},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2024_30_1_a17/}
}
TY  - JOUR
AU  - E. N. Khailov
TI  - Extensibility of solutions of non-autonomous systems of quadratic differential equations and their application in optimal control problems
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2024
SP  - 237
EP  - 248
VL  - 30
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TIMM_2024_30_1_a17/
LA  - ru
ID  - TIMM_2024_30_1_a17
ER  - 
%0 Journal Article
%A E. N. Khailov
%T Extensibility of solutions of non-autonomous systems of quadratic differential equations and their application in optimal control problems
%J Trudy Instituta matematiki i mehaniki
%D 2024
%P 237-248
%V 30
%N 1
%U http://geodesic.mathdoc.fr/item/TIMM_2024_30_1_a17/
%G ru
%F TIMM_2024_30_1_a17
E. N. Khailov. Extensibility of solutions of non-autonomous systems of quadratic differential equations and their application in optimal control problems. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 30 (2024) no. 1, pp. 237-248. http://geodesic.mathdoc.fr/item/TIMM_2024_30_1_a17/

[1] Pontryagin L.S., Boltyanskii V.G., Gamkrelidze R.V., Mischenko E.F., Matematicheskaya teoriya optimalnykh protsessov, Nauka, M., 1983, 392 pp. | MR

[2] Vasilev F.P., Metody optimizatsii, Faktorial Press, M., 2002, 824 pp.

[3] Li E.B., Markus L., Osnovy teorii optimalnogo upravleniya, Nauka, M., 1972, 576 pp.

[4] Dmitruk A.V., “Ob odnom obobschenii otsenki chisla nulei reshenii lineinogo differentsialnogo uravneniya”, Tr. VNII cistemnykh issledovanii, 1990, no. 1, 72–76

[5] Dmitruk A.V., “A generalized estimate on the number of zeros for solutions of a class of linear differential equations”, SIAM J. Control Optim., 30:5 (1992), 1087–1091 | DOI | MR | Zbl

[6] Khailov E.N., Grigoreva E.V., “O prodolzhimosti reshenii neavtonomnykh kvadratichnykh differentsialnykh sistem”, Tr. In-ta matematiki i mekhaniki UrO RAN, 19:4 (2013), 279–288 | MR

[7] Schättler H., Ledzewicz U., Geometric optimal control: theory, methods and examples, Springer, NY; Heidelberg; Dordrecht; London, 2012, 640 pp. | Zbl

[8] Khartman F., Obyknovennye differentsialnye uravneniya, Mir, M., 1970, 720 pp.

[9] Szarski J., Differential inequalities, Polish Sci. Publ., Warszawa, 1965, 256 pp. | MR | Zbl

[10] Grigorieva E.V., Khailov E.N., “Optimal vaccination, treatment, and preventive campaigns in regard to the SIR epidemic model”, Math. Model. Nat. Pheno, 9:4 (2014), 105–121 | DOI | MR | Zbl

[11] Grigorieva E.V., Khailov E.N., “Optimal intervention strategies for a SEIR control model of Ebola epidemics”, Mathematics, 3:4 (2015), 961–983 | DOI | MR | Zbl

[12] Grigorieva E.V., Khailov E.N., Korobeinikov A., “Optimal control for a SIR epidemic model with nonlinear incidence rate”, Math. Model. Nat. Pheno, 11:4 (2016), 89–104 | DOI | MR | Zbl

[13] Grigorieva E., Khailov E., Korobeinikov A., “Optimal control for an SEIR epidemic model with nonlinear incidence rate”, Stud. Appl. Math., 141 (2018), 353–398 | DOI | MR | Zbl

[14] Martcheva M., An introduction to mathematical epidemiology, Springer, NY; Heidelberg; Dordrecht; London, 2015, 453 pp. | MR | Zbl

[15] Sharomi O., Malik T., “Optimal control in epidemiology”, Ann. Oper. Res., 251 (2017), 55–71 | DOI | MR | Zbl

[16] Kuzenkov O.A., Ryabova E.A., Matematicheskoe modelirovanie protsessov otbora, Izd-vo Nizhegorod. un-ta, N. Novgorod, 2007, 324 pp.

[17] Khailov E., Grigorieva E., Klimenkova A., “Optimal CAR T-cell immunotherapy strategies for a leukemia treatment model”, Games, 11:4 (2020), 53, 26 pp. | DOI | MR | Zbl

[18] Grigorieva E.V., Khailov E.N., Korobeinikov A., “Optimal controls of the highly active antiretroviral therapy”, Abstr. Appl. Anal., 2020 (2020), 8107106, 23 pp. | DOI | MR | Zbl

[19] Grigorenko N.L., Khailov E.N., Grigoreva E.V., Klimenkova A.D., “Optimalnye strategii CAR-T terapii lecheniya leikemii v modeli khischnik — zhertva Lotki — Volterry”, Tr. In-ta matematiki i mekhaniki UrO RAN, 27:3 (2021), 43–58 | DOI | MR

[20] Schättler H., Ledzewicz U., Optimal control for mathematical models of cancer therapies: an application of geometric methods, Springer, NY; Heidelberg; Dordrecht; London, 2015, 496 pp. | Zbl