@article{TIMM_2024_30_1_a17,
author = {E. N. Khailov},
title = {Extensibility of solutions of non-autonomous systems of quadratic differential equations and their application in optimal control problems},
journal = {Trudy Instituta matematiki i mehaniki},
pages = {237--248},
year = {2024},
volume = {30},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TIMM_2024_30_1_a17/}
}
TY - JOUR AU - E. N. Khailov TI - Extensibility of solutions of non-autonomous systems of quadratic differential equations and their application in optimal control problems JO - Trudy Instituta matematiki i mehaniki PY - 2024 SP - 237 EP - 248 VL - 30 IS - 1 UR - http://geodesic.mathdoc.fr/item/TIMM_2024_30_1_a17/ LA - ru ID - TIMM_2024_30_1_a17 ER -
%0 Journal Article %A E. N. Khailov %T Extensibility of solutions of non-autonomous systems of quadratic differential equations and their application in optimal control problems %J Trudy Instituta matematiki i mehaniki %D 2024 %P 237-248 %V 30 %N 1 %U http://geodesic.mathdoc.fr/item/TIMM_2024_30_1_a17/ %G ru %F TIMM_2024_30_1_a17
E. N. Khailov. Extensibility of solutions of non-autonomous systems of quadratic differential equations and their application in optimal control problems. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 30 (2024) no. 1, pp. 237-248. http://geodesic.mathdoc.fr/item/TIMM_2024_30_1_a17/
[1] Pontryagin L.S., Boltyanskii V.G., Gamkrelidze R.V., Mischenko E.F., Matematicheskaya teoriya optimalnykh protsessov, Nauka, M., 1983, 392 pp. | MR
[2] Vasilev F.P., Metody optimizatsii, Faktorial Press, M., 2002, 824 pp.
[3] Li E.B., Markus L., Osnovy teorii optimalnogo upravleniya, Nauka, M., 1972, 576 pp.
[4] Dmitruk A.V., “Ob odnom obobschenii otsenki chisla nulei reshenii lineinogo differentsialnogo uravneniya”, Tr. VNII cistemnykh issledovanii, 1990, no. 1, 72–76
[5] Dmitruk A.V., “A generalized estimate on the number of zeros for solutions of a class of linear differential equations”, SIAM J. Control Optim., 30:5 (1992), 1087–1091 | DOI | MR | Zbl
[6] Khailov E.N., Grigoreva E.V., “O prodolzhimosti reshenii neavtonomnykh kvadratichnykh differentsialnykh sistem”, Tr. In-ta matematiki i mekhaniki UrO RAN, 19:4 (2013), 279–288 | MR
[7] Schättler H., Ledzewicz U., Geometric optimal control: theory, methods and examples, Springer, NY; Heidelberg; Dordrecht; London, 2012, 640 pp. | Zbl
[8] Khartman F., Obyknovennye differentsialnye uravneniya, Mir, M., 1970, 720 pp.
[9] Szarski J., Differential inequalities, Polish Sci. Publ., Warszawa, 1965, 256 pp. | MR | Zbl
[10] Grigorieva E.V., Khailov E.N., “Optimal vaccination, treatment, and preventive campaigns in regard to the SIR epidemic model”, Math. Model. Nat. Pheno, 9:4 (2014), 105–121 | DOI | MR | Zbl
[11] Grigorieva E.V., Khailov E.N., “Optimal intervention strategies for a SEIR control model of Ebola epidemics”, Mathematics, 3:4 (2015), 961–983 | DOI | MR | Zbl
[12] Grigorieva E.V., Khailov E.N., Korobeinikov A., “Optimal control for a SIR epidemic model with nonlinear incidence rate”, Math. Model. Nat. Pheno, 11:4 (2016), 89–104 | DOI | MR | Zbl
[13] Grigorieva E., Khailov E., Korobeinikov A., “Optimal control for an SEIR epidemic model with nonlinear incidence rate”, Stud. Appl. Math., 141 (2018), 353–398 | DOI | MR | Zbl
[14] Martcheva M., An introduction to mathematical epidemiology, Springer, NY; Heidelberg; Dordrecht; London, 2015, 453 pp. | MR | Zbl
[15] Sharomi O., Malik T., “Optimal control in epidemiology”, Ann. Oper. Res., 251 (2017), 55–71 | DOI | MR | Zbl
[16] Kuzenkov O.A., Ryabova E.A., Matematicheskoe modelirovanie protsessov otbora, Izd-vo Nizhegorod. un-ta, N. Novgorod, 2007, 324 pp.
[17] Khailov E., Grigorieva E., Klimenkova A., “Optimal CAR T-cell immunotherapy strategies for a leukemia treatment model”, Games, 11:4 (2020), 53, 26 pp. | DOI | MR | Zbl
[18] Grigorieva E.V., Khailov E.N., Korobeinikov A., “Optimal controls of the highly active antiretroviral therapy”, Abstr. Appl. Anal., 2020 (2020), 8107106, 23 pp. | DOI | MR | Zbl
[19] Grigorenko N.L., Khailov E.N., Grigoreva E.V., Klimenkova A.D., “Optimalnye strategii CAR-T terapii lecheniya leikemii v modeli khischnik — zhertva Lotki — Volterry”, Tr. In-ta matematiki i mekhaniki UrO RAN, 27:3 (2021), 43–58 | DOI | MR
[20] Schättler H., Ledzewicz U., Optimal control for mathematical models of cancer therapies: an application of geometric methods, Springer, NY; Heidelberg; Dordrecht; London, 2015, 496 pp. | Zbl