On the uniqueness of the solution to the inverse boundary value problem for the heat equation on a finite time interval
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 30 (2024) no. 1, pp. 223-236 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

This work is devoted to proving the uniqueness of the solution to the inverse boundary value problem of heat conduction on a finite time interval. For these purposes, the original problem is extended to an infinite time interval, and then the Fourier transform in time is applied to the new problem. As a result, the problem is reduced to a system of ordinary differential equations, which is solved explicitly. A uniqueness theorem is proved for the inverse boundary value problem in Fourier images.
Keywords: inverse heat conduction problem, ill-posed problem.
Mots-clés : Fourier transform
@article{TIMM_2024_30_1_a16,
     author = {V. P. Tanana},
     title = {On the uniqueness of the solution to the inverse boundary value problem for the heat equation on a finite time interval},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {223--236},
     year = {2024},
     volume = {30},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2024_30_1_a16/}
}
TY  - JOUR
AU  - V. P. Tanana
TI  - On the uniqueness of the solution to the inverse boundary value problem for the heat equation on a finite time interval
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2024
SP  - 223
EP  - 236
VL  - 30
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TIMM_2024_30_1_a16/
LA  - ru
ID  - TIMM_2024_30_1_a16
ER  - 
%0 Journal Article
%A V. P. Tanana
%T On the uniqueness of the solution to the inverse boundary value problem for the heat equation on a finite time interval
%J Trudy Instituta matematiki i mehaniki
%D 2024
%P 223-236
%V 30
%N 1
%U http://geodesic.mathdoc.fr/item/TIMM_2024_30_1_a16/
%G ru
%F TIMM_2024_30_1_a16
V. P. Tanana. On the uniqueness of the solution to the inverse boundary value problem for the heat equation on a finite time interval. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 30 (2024) no. 1, pp. 223-236. http://geodesic.mathdoc.fr/item/TIMM_2024_30_1_a16/

[1] Alifanov O.M., Artyukhin E.A., Rumyantsev S.V., Ekstremalnye metody resheniya nekorrektnykh zadach i ikh prilozheniya k obratnym zadacham teploobmena, Nauka, M., 1988, 288 pp. | MR

[2] Tanana V.P., Sidikova A.V., Optimal methods for ill-posed problems with applications to heat conduction, De Gruyter, Berlin, Boston, 2018, 130 pp. | DOI | MR | Zbl

[3] Tikhonov A.N., Vasileva A.B., Sveshnikov A.G., Differentsialnye uravneniya, Nauka, Moskva, 1985, 231 pp.

[4] Landis E.M., “Nekotorye voprosy kachestvennoi teorii ellipticheskikh i parabolicheskikh uravnenii”, Uspekhi mat. nauk, 2:1 (1959), 21–85

[5] Kabanikhin S.I., Obratnye i nekorrektnye zadachi, Sib. nauch. izd-vo, Novosibirsk, 2009, 458 pp.

[6] Tikhonov A.N., Samarskii A.A., Uravneniya matematicheskoi fiziki, Nauka, M., 1977, 736 pp. | MR