On the sheaf representation of a $pq$-Baer $*$-semiring with involution
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 30 (2024) no. 1, pp. 190-202
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

In the paper, a functional (sheaf) representation of a $pq$-Baer $*$-semiring with involution is obtained. For a $*$-semiring, the notions of central and central prime ideals are introduced. The set ${\rm Sp}\,S$ of all central prime ideals of a $pq$-Baer $*$-semiring with the Zariski topology becomes a zero-dimensional compact Hausdorff space. The sheaf $(\mathbb{L}(S), {\rm Sp}\,S)$ of $*$-semirings is constructed on ${\rm Sp}\,S$ as a basis space. It is proved that an arbitrary $pq$-Baer $*$-semiring is $*$-isomorphic to the $*$-semiring of all global sections of the sheaf $\mathbb{L}(S)$. Open questions are formulated.
Keywords: semiring with involution, $pq$-Baer $*$-semiring, sheaf representation.
@article{TIMM_2024_30_1_a13,
     author = {N. S. Protasov and V. V. Chermnykh},
     title = {On the sheaf representation of a $pq${-Baer} $*$-semiring with involution},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {190--202},
     year = {2024},
     volume = {30},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2024_30_1_a13/}
}
TY  - JOUR
AU  - N. S. Protasov
AU  - V. V. Chermnykh
TI  - On the sheaf representation of a $pq$-Baer $*$-semiring with involution
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2024
SP  - 190
EP  - 202
VL  - 30
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TIMM_2024_30_1_a13/
LA  - ru
ID  - TIMM_2024_30_1_a13
ER  - 
%0 Journal Article
%A N. S. Protasov
%A V. V. Chermnykh
%T On the sheaf representation of a $pq$-Baer $*$-semiring with involution
%J Trudy Instituta matematiki i mehaniki
%D 2024
%P 190-202
%V 30
%N 1
%U http://geodesic.mathdoc.fr/item/TIMM_2024_30_1_a13/
%G ru
%F TIMM_2024_30_1_a13
N. S. Protasov; V. V. Chermnykh. On the sheaf representation of a $pq$-Baer $*$-semiring with involution. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 30 (2024) no. 1, pp. 190-202. http://geodesic.mathdoc.fr/item/TIMM_2024_30_1_a13/

[1] Salavova K., Koltsa s involyutsiei, dis. \ldots kand. fiz.-matem. nauk, MGU imeni M.V. Lomonosova, Moskva, 1978

[2] Pierce R.S., “Modules over commutative regular rings”, Mem. Amer. Math. Soc., 70 (1967), 1–112 | DOI | MR | Zbl

[3] Tyukavkin D.V., “Analog pirsovskikh puchkov dlya kolets s involyutsiei”, Uspekhi mat. nauk, 38:5(233) (1983), 209–210 | DOI | MR

[4] Markov R.V., “Pirsovskoe predstavlenie polukolets s involyutsiei”, Izv. vuzov. Matematika, 2014, no. 4, 18–24 | DOI

[5] Lambek J., “On representation of modules by sheaves of factor modules”, Can. Math. Bull., 14:3 (1971), 359–368 | DOI | MR | Zbl

[6] Chermnykh V.V., “Funktsionalnye predstavleniya polukolets”, Fundament. i prikl. matematika, 17:3 (2012), 111–227 | DOI | Zbl

[7] Kaplansky I., Rings of operators, W.A.Benjamin, Inc., NY; Amsterdam, 1968 | MR | Zbl

[8] Clark W.E., “Twisted matrix units semigroup algebras”, Duke Math. J., 34:3 (1967), 417–423 | DOI | MR | Zbl

[9] Birkenmeier G.F., Kim J.Y., Park J.K., “Principally quasi-Baer rings”, Comm. Algebra, 29:2 (2001), 639–660 | DOI | MR | Zbl

[10] Markov R.V., Chermnykh V.V., “Polukoltsa, blizkie k regulyarnym, i ikh pirsovskie sloi”, Tr. In-ta matematiki i mekhaniki UrO RAN, 21:3 (2015), 213–221 | MR

[11] Babenko M.V., Chermnykh V.V., “Pirsovskie sloi polukolets kosykh mnogochlenov”, Tr. In-ta matematiki i mekhaniki UrO RAN, 27:4 (2021), 48–60 | DOI | MR

[12] Golan J.S., Semirings and their applications, Kluwer Acad. Publ., Dordrecht, 1999, 382 pp. | DOI | MR | Zbl

[13] Hofmann K.H., “Representations of algebras by continuous sections”, Bulletin American Math. Soc., 78:3 (1972), 291–374 | DOI | MR

[14] Davey B.A., “Sheaf spaces and sheaves of universal algebras”, Math. Z., 134:4 (1973), 275–290 | DOI | MR | Zbl

[15] Khairnar A., Waphare B.N., “A sheaf representation of principally quasi-Baer $*$-Rings”, Algebras and Representation Theory, 22:1 (2019), 79–97 | DOI | MR | Zbl

[16] Birkenmeier G.F., Kim J.Y., Park J.K., “A sheaf representation of quasi-Baer rings”, J. Pure Appl. Algebra, 146:3 (2000), 209–223 | DOI | MR | Zbl

[17] Ahmadi M., Golestani N., Moussavi A., “Generalized quasi-Baer $*$-rings and Banach $*$-algebras”, Communications in Algebra, 48:5 (2020), 2207–2247 | DOI | MR | Zbl