A Fejér rational integral operator on a closed interval and approximation of functions with a power-law singularity
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 30 (2024) no. 1, pp. 170-189
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

Rational approximations of continuous functions and functions with a power-law singularity on a closed interval are studied by means of integral Fejér-type operators. Upper estimates of approximations of continuous functions on a closed interval are derived; the estimates are expressed in terms of the modulus of continuity and depend on the position of a point in the interval. Rational approximations of the function $(1-x)^\gamma$, $\gamma\in (0,1)$, on the interval $[-1,1]$ are studied. Upper estimates of uniform approximations in terms of the corresponding majorant and an asymptotic expression as $n\to\infty$ of this majorant are found. In the case of a fixed number of poles of the approximating function, optimal values of the parameters are obtained, for which the majorant of the uniform approximations decreases at the highest rate. A consequence of the results obtained is asymptotic estimates of approximations of some specific functions by Fejér sums of polynomial Fourier–Chebyshev series.
Keywords: rational approximations, Fejér integral operator, pointwise and uniform estimates of approximations, modulus of continuity, function with a power-law singularity, asymptotic estimates.
@article{TIMM_2024_30_1_a12,
     author = {P. G. Potseiko and Y. A. Rovba},
     title = {A {Fej\'er} rational integral operator on a closed interval and approximation of functions with a power-law singularity},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {170--189},
     year = {2024},
     volume = {30},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2024_30_1_a12/}
}
TY  - JOUR
AU  - P. G. Potseiko
AU  - Y. A. Rovba
TI  - A Fejér rational integral operator on a closed interval and approximation of functions with a power-law singularity
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2024
SP  - 170
EP  - 189
VL  - 30
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TIMM_2024_30_1_a12/
LA  - ru
ID  - TIMM_2024_30_1_a12
ER  - 
%0 Journal Article
%A P. G. Potseiko
%A Y. A. Rovba
%T A Fejér rational integral operator on a closed interval and approximation of functions with a power-law singularity
%J Trudy Instituta matematiki i mehaniki
%D 2024
%P 170-189
%V 30
%N 1
%U http://geodesic.mathdoc.fr/item/TIMM_2024_30_1_a12/
%G ru
%F TIMM_2024_30_1_a12
P. G. Potseiko; Y. A. Rovba. A Fejér rational integral operator on a closed interval and approximation of functions with a power-law singularity. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 30 (2024) no. 1, pp. 170-189. http://geodesic.mathdoc.fr/item/TIMM_2024_30_1_a12/

[1] Fejér L., “Untersuchungen über Fouriersche Reihen”, Mathematische Annalen, 58 (1904), 51–69 | DOI | MR

[2] Lebesgue H., “Sur les intégrales singuliéres”, Annales de la faculté des sciences de Toulouse 3e série, 1 (1909), 25–117 | MR

[3] Bernstein S., Sur l'ordre de la meilleure approximation des fonctions continues par des polynomés de degré donné, Hayez, imprimeur des academies royales, Bruxelles, 1912, 104 pp.

[4] Privalov' I.I., “O priblizhenii summami Fejer'a funktsii udovletvoryayuschikh' usloviyu Lipschitz'a”, Mat. sb., 30:4 (1918), 521–526

[5] Nikolskii S.M., “Ob asimptoticheskom povedenii ostatka pri priblizhenii funktsii, udovletvoryayuschikh usloviyu Lipshitsa, summami Feiera”, Izv. AN SSSR. Ser. matematicheskaya, 4:6 (1940), 501–508 | Zbl

[6] Zygmund A., “On the degree of approximation of functions by Fejér means”, Bull. Amer. Soc., 51:4 (1945), 274–278 | DOI | MR | Zbl

[7] Novikov O. A., Rovenskaya O.G., “Priblizhenie klassov integralov Puassona summami Feiera”, Donbasskii gos. ped. un-t. Kompyuternye issledovaniya i modelirovanie, 7:4 (2015), 813–819

[8] Efimov A.V., “O priblizhenii nekotorykh klassov nepreryvnykh funktsii summami Fure i summami Feiera”, Izv. AN SSSR. Ser. matematicheskaya, 22:1 (1958), 81–116 | Zbl

[9] Lebed G.K., Avdeenko A.A., “O priblizhenii periodicheskikh funktsii summami Feiera”, Izv. AN SSSR. Ser. matematicheskaya, 35:1 (1971), 83–92 | Zbl

[10] Savchuk V.V., “Priblizheniya srednimi Feiera funktsii klassa Dirikhle”, Mat. zametki, 81:5 (2007), 744–750 | DOI | MR | Zbl

[11] Dzhrbashyan M.M., “K teorii ryadov Fure po ratsionalnym funktsiyam”, Izv. AN ArmSSR. Ser. fiz.-mat, 9:7 (1956), 1–27

[12] Rusak V.N., “O priblizhenii ratsionalnymi drobyami”, Dokl. AN BSSR, 8:7 (1964), 432–435 | Zbl

[13] Rusak V.N., “O priblizhenii ratsionalnymi funktsiyami na veschestvennoi osi”, Izv. AN BSSR. Ser. fiz.-mat., 1974, no. 1, 22–28 | Zbl

[14] Rusak V.N., Ratsionalnye funktsii kak apparat priblizheniya, Izd-vo BGU, Mn., 1979, 179 pp.

[15] Kitbalyan A.A., “Ob odnom oboschenii yadra Feiera”, Dokl. AN Arm. SSR, 69:1 (1979), 8–14 | MR | Zbl

[16] Rovba E.A., “Ratsionalnye integralnye operatory na otrezke”, Vestn. BGU, 1:1 (1996), 34–39 | Zbl

[17] Rovba E.A., “O priblizhenii ratsionalnymi operatorami Feiera i Dzheksona funktsii ogranichennoi variatsii”, Dokl. Natsional. akademii nauk Belarusi, 42:4 (1998), 13–17 | MR | Zbl

[18] Smotritskii K.A., “O priblizhenii vypuklykh funktsii ratsionalnymi integralnymi operatorami na otrezke”, Vestn. BGU, 1:3 (2005), 64–70 | MR | Zbl

[19] Bernshtein S.N., Ekstremalnye svoistva polinomov i nailuchshee priblizhenie nepreryvnykh funktsii odnoi veschestvennoi peremennoi, Ch. 1, Glavnaya redaktsiya obschetekhnicheskoi literatury, M.; L., 1937, 203 pp.

[20] Ibragimov I.I., “Ob asimptoticheskom znachenii nailuchshego priblizheniya funktsii, imeyuschikh veschestvennuyu osobuyu tochku”, Izv. AN SSSR. Ser. matematicheskaya, 10:5 (1946), 429–460 | Zbl

[21] Nikolskii S.M., “O nailuchshem priblizhenii mnogochlenami v srednem funktsii $|a-x|^s$”, Izv. AN SSSR. Ser. matematicheskaya, 11:2 (1947), 139–180

[22] Reddy A.R., “A Note on rational approximation to $(1 - x)^{1/2}$”, J. Approx. Theory, 25:1 (1979), 31–33 | DOI | MR | Zbl

[23] Bundschuh P.A., “Remark on Reddy's paper on the rational approximation of $(1 - x)^{1/2}$”, J. Approx. Theory, 32:3 (1981), 167–169 | DOI | MR | Zbl

[24] McD. Mercer A., “A note on rational approximation to $(1 -x)^\alpha$”, J. Approx. Theory, 38:1 (1983), 101–103 | DOI | MR | Zbl

[25] Reddy A.R., “A note on rational approximation to $(1 - x)^\sigma$”, J. Approx. Theory, 49:4 (1987), 404–407 | DOI | MR | Zbl

[26] Alzer H., “On rational approximation of $(1 - x)^\sigma$”, Archiv der Mathematik, 67:2 (1996), 134–137 | DOI | MR | Zbl

[27] Andersson J.-E., “Best Rational Approximation to Markov Functions”, J. Approx. Theory, 76:1 (1994), 219–232 | DOI | MR | Zbl

[28] Pekarskii A.A., “Nailuchshie ravnomernye ratsionalnye priblizheniya funktsii Markova”, Algebra i analiz, 7:2 (1995), 121–132 | Zbl

[29] Patseika P.G., Rouba Y.A., Smatrytski K.A., “On one rational integral operator of Fourier–Chebyshev type and approximation of Markov functions”, J. of the Belarusian State University. Mathematics and Informatics, 2 (2020), 6–27 | DOI | MR

[30] Rovba E.A., “Ob odnom pryamom metode v ratsionalnoi approksimatsii”, Dokl. Natsional. akademii nauk Belarusi, 23:11 (1979), 968–971 | MR | Zbl

[31] Potseiko P.G., Rovba E.A., “O ratsionalnykh summakh Abelya— Puassona na otrezke i approksimatsiyakh funktsii Markova”, Zhurn. Belorus. gos. un-ta. Matematika. Informatika, 3 (2021), 6–24 | DOI | MR

[32] Potseiko P.G., Rovba E.A., “O ratsionalnykh approksimatsiyakh funktsii Markova na otrezke summami Feiera s fiksirovannym kolichestvom polyusov”, Tr. instituta matematiki, 30:1-2 (2022), 57–77

[33] Misyuk V.R., “Ob nailuchshem priblizhenii stepennoi funktsii v prostranstve Bergmana”, Kazanskoe mat. ob-vo. Teoriya funktsii, ee prilozheniya i smezhnye voprosy, Materialy Trinadtsatoi mezhdunar. Kazanskoi letnei nauch. shk.-konf., Tr. Matematicheskogo tsentra imeni N. I. Lobachevskogo, 54, Izd-vo Kazan. mat. ob-va, Izd-vo Akademii nauk RT, Kazan, 2017, 257–259

[34] Timan A.F., Teoriya priblizhenii funktsii deistvitelnogo peremennogo, GIFML, M., 1960, 624 pp.

[35] Akhiezer N.I., Lektsii po teorii approksimatsii, Nauka, M., 1965, 408 pp.

[36] Sidorov Yu.V., Fedoryuk M.V., Shabunin M.I., Lektsii po teorii funktsii kompleksnogo peremennogo, Nauka, Gl. red. Fiz-mat. lit-ry, M., 1989, 480 pp. | MR

[37] Potseiko P.G., Rovba E.A., “Summy Feiera ratsionalnogo ryada Fure — Chebysheva i approksimatsii funktsii $|x|^s$”, Zhurn. Belorus. gos. un-ta. Matematika. Informatika, 2019, no. 3, 18–34 | DOI | MR | Zbl