Reidemeister torsion for vector bundles on $\mathbb{P}^1_\mathbb{Z}$
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 30 (2024) no. 1, pp. 156-169
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

We consider vector bundles of rank 2 with a trivial generic fiber on the projective line over $\mathbb{Z}$. For such bundles, a new invariant is constructed — the Reidemeister torsion, which is an analog of the classical Reidemeister torsion from topology. For vector bundles of rank 2 with a trivial generic fiber and jumps of height 1, that is, for the bundles that are isomorphic to $\mathcal{O}^2$ in the fiber over $\mathbb{Q}$ and are isomorphic to $\mathcal{O} ^2$ or $\mathcal{O}(-1)\oplus\mathcal{O}(1)$ over each closed point Spec$(\mathbb{Z})$, we calculate this invariant and show that it, together with the discriminant of the bundle, completely determines such a bundle.
Keywords: vector bundle, arithmetic surface, projective line
Mots-clés : torsion.
@article{TIMM_2024_30_1_a11,
     author = {V. M. Polyakov},
     title = {Reidemeister torsion for vector bundles on $\mathbb{P}^1_\mathbb{Z}$},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {156--169},
     year = {2024},
     volume = {30},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2024_30_1_a11/}
}
TY  - JOUR
AU  - V. M. Polyakov
TI  - Reidemeister torsion for vector bundles on $\mathbb{P}^1_\mathbb{Z}$
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2024
SP  - 156
EP  - 169
VL  - 30
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TIMM_2024_30_1_a11/
LA  - ru
ID  - TIMM_2024_30_1_a11
ER  - 
%0 Journal Article
%A V. M. Polyakov
%T Reidemeister torsion for vector bundles on $\mathbb{P}^1_\mathbb{Z}$
%J Trudy Instituta matematiki i mehaniki
%D 2024
%P 156-169
%V 30
%N 1
%U http://geodesic.mathdoc.fr/item/TIMM_2024_30_1_a11/
%G ru
%F TIMM_2024_30_1_a11
V. M. Polyakov. Reidemeister torsion for vector bundles on $\mathbb{P}^1_\mathbb{Z}$. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 30 (2024) no. 1, pp. 156-169. http://geodesic.mathdoc.fr/item/TIMM_2024_30_1_a11/

[1] Roberts L., “Indecomposable vector bundles on the projective line”, Canad. J. Math., 24:1 (1972), 149–154 | DOI | MR

[2] Horrocks G., “Projective modules over an extension of a local ring”, Proc. London Math. Soc., s3-14:4 (1964), 714–718 | DOI | MR | Zbl

[3] Hanna Ch.C., “Subbundles of vector bundles on the projective line”, J. Algebra, 52:2 (1978), 322–327 | DOI | MR | Zbl

[4] Smirnov A.L., “On filtrations of vector bundles over $P^1_\mathbb{Z}$”, Arithmetic and Geometry, London Math. Soc. Lect. Note Ser., 420, Cambridge Univ. Press, Cambridge, 2015, 436–457 | MR | Zbl

[5] Smirnov A.L., “Vektornye rassloeniya na $P^1_\mathbb{Z}$ s prostymi podskokami”, Zapiski nauch. seminara POMI, 452, 2016, 202–217

[6] Reidemeister K., “Homotopieringe und Linsenräume”, Abh. Math. Sem. Hamburg, 11 (1935), 102–109 | DOI | MR | Zbl

[7] Nicolaescu L.I., Notes on the Reidemeister torsion. Available at:, 2002, 259 pp. URL: https://www3.nd.edu/~lnicolae/Torsion.pdf

[8] Milnor J., “Whitehead torsion”, Bull. Amer. Math. Soc., 72:3 (1966), 358–426 | DOI | MR | Zbl

[9] Ranicki A., “The algebraic theory of torsion I. Foundations”, Algebraic and Geometric Topology, Ser. Lecture Notes Math., 1126, eds. A. Ranicki, N. Levitt, F. Quinn, Springer, Berlin; Heidelberg, 1985 | DOI | MR | Zbl

[10] Polyakov V.M., “Konechnost chisla klassov vektornykh rassloenii na $P^1_\mathbb{Z}$ s podskokami vysoty $2$”, Zapiski nauch. seminara POMI, 511, 2022, 137–160

[11] Cartan H., Eilenberg S., Homological algebra, Princeton Mathematical Ser., 28, Princeton Univ. Press, Princeton, 1956 | DOI | MR