Voir la notice du chapitre de livre
@article{TIMM_2024_30_1_a1,
author = {E. V. Antipina and S. A. Mustafina and A. F. Antipin},
title = {Evolutionary algorithms for finding approximate solutions to optimal control problems},
journal = {Trudy Instituta matematiki i mehaniki},
pages = {21--31},
year = {2024},
volume = {30},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TIMM_2024_30_1_a1/}
}
TY - JOUR AU - E. V. Antipina AU - S. A. Mustafina AU - A. F. Antipin TI - Evolutionary algorithms for finding approximate solutions to optimal control problems JO - Trudy Instituta matematiki i mehaniki PY - 2024 SP - 21 EP - 31 VL - 30 IS - 1 UR - http://geodesic.mathdoc.fr/item/TIMM_2024_30_1_a1/ LA - ru ID - TIMM_2024_30_1_a1 ER -
%0 Journal Article %A E. V. Antipina %A S. A. Mustafina %A A. F. Antipin %T Evolutionary algorithms for finding approximate solutions to optimal control problems %J Trudy Instituta matematiki i mehaniki %D 2024 %P 21-31 %V 30 %N 1 %U http://geodesic.mathdoc.fr/item/TIMM_2024_30_1_a1/ %G ru %F TIMM_2024_30_1_a1
E. V. Antipina; S. A. Mustafina; A. F. Antipin. Evolutionary algorithms for finding approximate solutions to optimal control problems. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 30 (2024) no. 1, pp. 21-31. http://geodesic.mathdoc.fr/item/TIMM_2024_30_1_a1/
[1] Xue B., Yao X., “A survey on evolutionary computation approaches to feature selection”, IEEE Transactions on Evolutionary Computation, 2016, no. 20, 606–626 | DOI
[2] Mohamed A.W., Mohamed A.K., “Adaptive guided differential evolution algorithm with novel mutation for numerical optimization”, Int. J. Machine Learning and Cybernetics, 10:2 (2019), 253–277 | DOI
[3] Panteleev A.V., Metlitskaya D.V., “Primenenie geneticheskikh algoritmov s binarnym i veschestvennym kodirovaniem dlya priblizhennogo sinteza suboptimalnogo upravleniya determinirovannymi sistemami”, Avtomatika i telemekhanika, 2011, no. 11, 117–129 | Zbl
[4] Gubin P.Yu., Oboskalov V.P., “Primenenie metoda differentsialnoi evolyutsii v zadache planirovaniya remontov generiruyuschego oborudovaniya”, Izv. RAN. Energetika, 2021, no. 2, 50–64 | DOI
[5] Eremeev A.V. Tyunin N.N., “Algoritm differentsialnoi evolyutsii dlya optimizatsii napravlennosti fazirovannykh antennykh reshetok”, Mat. struktury i modelirovanie, 2022, no. 3, 57–68 | DOI | MR
[6] Kovalevich A.A., Yakimov A.I., Albkeirat D.M., “Issledovanie stokhasticheskikh algoritmov optimizatsii dlya primeneniya v imitatsionnom modelirovanii sistem”, Inform. tekhnologii, 2011, no. 8, 55–60
[7] Storn R., Price K., “Differential evolution – a simple and efficient heuristic for global optimization over continuous spaces”, J. Global Optimi., 1997, no. 11, 341–359 | DOI | MR | Zbl
[8] Karpenko A.P., “Evolyutsionnye operatory populyatsionnykh algoritmov globalnoi optimizatsii”, Matematika i mat. modelirovanie, 2018, no. 1, 59–89 | DOI
[9] Mohamed A.W., “A novel differential evolution algorithm for solving constrained engineering optimization problems”, J. Intel. Manufact., 2018, no. 29, 659–692 | DOI
[10] Fedorenko R.P., Priblizhennye metody resheniya zadach optimalnogo upravleniya, Nauka, M., 1978, 488 pp.
[11] Rozenbrok Kh., Storn S., Vychislitelnye metody dlya inzhenerov-khimikov, Nauka, M., 1973, 444 pp.
[12] Tyatyushkin A.I., Chislennye metody i programmnye sredstva optimizatsii upravlyaemykh sistem, Nauka, Novosibirsk, 1992, 193 pp.