On the Kegel--Wielandt $\sigma$-Problem
    
    
  
  
  
      
      
      
        
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 29 (2023) no. 4, pp. 121-129
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			For an arbitrary partition $\sigma$ of the set $\mathbb{P}$ of all primes, a sufficient condition for the $\sigma$-subnormality of a subgroup of a finite group is given. It is proved that the Kegel–Wielandt $\sigma$-problem has a positive solution in the class of all finite groups all of whose nonabelian composition factors are alternating groups, sporadic groups, or Lie groups of rank $1$.
			
            
            
            
          
        
      
                  
                    
                    
                    
                    
                    
                      
Keywords: 
finite group, $\sigma$-subnormal subgroup, Kegel–Wielandt $\sigma$-problem, Hall subgroup, complete Hall set.
                    
                  
                
                
                @article{TIMM_2023_29_4_a9,
     author = {S. F. Kamornikov and V. N. Tyutyanov},
     title = {On the {Kegel--Wielandt} $\sigma${-Problem}},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {121--129},
     publisher = {mathdoc},
     volume = {29},
     number = {4},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2023_29_4_a9/}
}
                      
                      
                    S. F. Kamornikov; V. N. Tyutyanov. On the Kegel--Wielandt $\sigma$-Problem. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 29 (2023) no. 4, pp. 121-129. http://geodesic.mathdoc.fr/item/TIMM_2023_29_4_a9/
