On the Kegel–Wielandt $\sigma$-Problem
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 29 (2023) no. 4, pp. 121-129 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

For an arbitrary partition $\sigma$ of the set $\mathbb{P}$ of all primes, a sufficient condition for the $\sigma$-subnormality of a subgroup of a finite group is given. It is proved that the Kegel–Wielandt $\sigma$-problem has a positive solution in the class of all finite groups all of whose nonabelian composition factors are alternating groups, sporadic groups, or Lie groups of rank $1$.
Keywords: finite group, $\sigma$-subnormal subgroup, Kegel–Wielandt $\sigma$-problem, Hall subgroup, complete Hall set.
@article{TIMM_2023_29_4_a9,
     author = {S. F. Kamornikov and V. N. Tyutyanov},
     title = {On the {Kegel{\textendash}Wielandt} $\sigma${-Problem}},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {121--129},
     year = {2023},
     volume = {29},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2023_29_4_a9/}
}
TY  - JOUR
AU  - S. F. Kamornikov
AU  - V. N. Tyutyanov
TI  - On the Kegel–Wielandt $\sigma$-Problem
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2023
SP  - 121
EP  - 129
VL  - 29
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/TIMM_2023_29_4_a9/
LA  - ru
ID  - TIMM_2023_29_4_a9
ER  - 
%0 Journal Article
%A S. F. Kamornikov
%A V. N. Tyutyanov
%T On the Kegel–Wielandt $\sigma$-Problem
%J Trudy Instituta matematiki i mehaniki
%D 2023
%P 121-129
%V 29
%N 4
%U http://geodesic.mathdoc.fr/item/TIMM_2023_29_4_a9/
%G ru
%F TIMM_2023_29_4_a9
S. F. Kamornikov; V. N. Tyutyanov. On the Kegel–Wielandt $\sigma$-Problem. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 29 (2023) no. 4, pp. 121-129. http://geodesic.mathdoc.fr/item/TIMM_2023_29_4_a9/

[1] Kegel O.H., “Sylow-Gruppen und Subnormalteiler endlicher Gruppen”, Math. Z., 78 (1962), 205–221 | DOI | MR | Zbl

[2] Wielandt H., “Zusammengesetzte Gruppen: Hölders Programm heute”, The Santa Cruz conf. on finite groups (Santa Cruz, 1979), Proc. Sympos. Pure Math., 37, Amer. Math. Soc., Providence RI, 1980, 161–173 | DOI | MR

[3] Kleidman P.B., “A proof of the Kegel–Wielandt conjecture on subnormal subgroups”, Ann. Math. (2), 133:2 (1991), 369–428 | DOI | MR | Zbl

[4] Guralnick R., Kleidman P.B., Lyons R., “Sylow $p$-subgroups and subnormal subgroups of finite groups”, Proc. London Math. Soc. (3), 66:1 (1993), 129–151 | DOI | MR | Zbl

[5] The Kourovka notebook. Unsolved problems in group theory, 20th ed., eds. V.D. Mazurov, E.I. Khukhro, Inst. Math. SO RAN Publ., Novosibirsk, 2022, 269 pp. URL: https://kourovka-notebook.org/

[6] Skiba A.N., “On $\sigma$-subnormal and $\sigma$-permutable subgroups of finite groups”, J. Algebra, 436 (2015), 1–16 | DOI | MR | Zbl

[7] Kamornikov S.F., Tyutyanov V.N., “O $\sigma$-subnormalnykh podgruppakh konechnykh grupp”, Sib. mat. zhurn., 61:9 (2020), 337–343 | DOI | Zbl

[8] Ballester-Bolinches A., Kamornikov S.F., Tyutyanov V.N., “On the Kegel-Wielandt $\sigma$-problem for binary partitions”, Annali di Matematica Pura ed Applicata, 201:1 (2022), 443–451 | DOI | MR

[9] Kamornikov S.F., Tyutyanov V.N., “O nekotorykh aspektakh $\sigma$-problemy Kegelya — Vilandta”, Izv. vuzov. Matematika, 2022, no. 2, 18–28 | DOI

[10] Kamornikov S.F., Tyutyanov V.N., “O $\sigma$-subnormalnykh podgruppakh konechnykh $3^{'}$-grupp”, Ukr. mat. zhurn., 72:6 (2020), 806–811 | MR | Zbl

[11] Kamornikov S.F., Tyutyanov V.N., “K $\sigma$-probleme Kegelya — Vilandta”, Mat. zametki, 109:4 (2021), 564–570 | DOI | MR | Zbl

[12] Doerk K., Hawkes T., Finite soluble groups, Walter de Gruyter, Berlin; NY, 1992, 891 pp. | DOI | MR

[13] Huppert B., Endliche Gruppen I, Springer-Verlag, Berlin, 1967, 796 pp. | DOI | MR | Zbl

[14] Bray J.N., Holt D.F., Roney-Dougal C.M., The maximal subgroups of the low-dimensional finite classical groups, London Math. Soc. Lect. Note Ser., 407, Cambridge Univ. Press, Cambridge, 2013, 438 pp. | DOI | MR | Zbl

[15] Vdovin E.P., Revin D.O., “Teoremy silovskogo tipa”, Uspekhi mat. nauk, 66:5 (2011), 3–46 | DOI | MR | Zbl

[16] Kazarin L.S., “O proizvedenii konechnykh grupp”, Dokl. AN SSSR, 269:3 (1983), 528–531 | MR | Zbl

[17] Conway J.N., Curtis R.T., Norton S.P., Parker R.A., Wilson R.A., Atlas of finite groups, Oxford Univ. Press, Oxford, 1985, 252 pp. | MR | Zbl