On products of $\pi$-solvable finite groups
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 29 (2023) no. 4, pp. 109-120
Voir la notice de l'article provenant de la source Math-Net.Ru
In this paper, we study finite groups having a triple factorization $G=AB=AC=BC$, where the factors $A$, $B$, and $C$ are $\pi$-solvable subgroups of the group $G$ for some set $\pi$ of primes. This problem seems to have been first formulated by A. F. Vasil'ev and A. K. Furs in 2021 at the conference dedicated to the 90th anniversary of the birth of A. I. Starostin.
Keywords:
finite group, subgroup, character, representation, factorization.
@article{TIMM_2023_29_4_a8,
author = {L. S. Kazarin},
title = {On products of $\pi$-solvable finite groups},
journal = {Trudy Instituta matematiki i mehaniki},
pages = {109--120},
publisher = {mathdoc},
volume = {29},
number = {4},
year = {2023},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TIMM_2023_29_4_a8/}
}
L. S. Kazarin. On products of $\pi$-solvable finite groups. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 29 (2023) no. 4, pp. 109-120. http://geodesic.mathdoc.fr/item/TIMM_2023_29_4_a8/