On products of $\pi$-solvable finite groups
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 29 (2023) no. 4, pp. 109-120

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we study finite groups having a triple factorization $G=AB=AC=BC$, where the factors $A$, $B$, and $C$ are $\pi$-solvable subgroups of the group $G$ for some set $\pi$ of primes. This problem seems to have been first formulated by A. F. Vasil'ev and A. K. Furs in 2021 at the conference dedicated to the 90th anniversary of the birth of A. I. Starostin.
Keywords: finite group, subgroup, character, representation, factorization.
@article{TIMM_2023_29_4_a8,
     author = {L. S. Kazarin},
     title = {On products of $\pi$-solvable finite groups},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {109--120},
     publisher = {mathdoc},
     volume = {29},
     number = {4},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2023_29_4_a8/}
}
TY  - JOUR
AU  - L. S. Kazarin
TI  - On products of $\pi$-solvable finite groups
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2023
SP  - 109
EP  - 120
VL  - 29
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TIMM_2023_29_4_a8/
LA  - ru
ID  - TIMM_2023_29_4_a8
ER  - 
%0 Journal Article
%A L. S. Kazarin
%T On products of $\pi$-solvable finite groups
%J Trudy Instituta matematiki i mehaniki
%D 2023
%P 109-120
%V 29
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TIMM_2023_29_4_a8/
%G ru
%F TIMM_2023_29_4_a8
L. S. Kazarin. On products of $\pi$-solvable finite groups. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 29 (2023) no. 4, pp. 109-120. http://geodesic.mathdoc.fr/item/TIMM_2023_29_4_a8/