One-dimensional $(k,a)$-generalized Fourier transform
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 29 (2023) no. 4, pp. 92-108 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

We study the two-parametric $(k,a)$-generalized Fourier transform $\mathcal{F}_{k,a}$, $k,a>0$, on the line. For $a\neq 2$ it has deformation properties and, in particular, for a function $f$ from the Schwartz space $\mathcal{S}(\mathbb{R})$, $\mathcal{F}_{k,a}(f)$ may be not infinitely differentiable or rapidly decreasing at infinity. It is proved that the invariant set for the generalized Fourier transform $\mathcal{F}_{k,a}$ and differential-difference operator $|x|^{2-a}\Delta_kf(x)$, where $\Delta_k$ is the Dunkl Laplacian, is the class $$ \mathcal{S}_{a}(\mathbb{R})=\{f(x)=F_1(|x|^{a/2})+xF_2(|x|^{a/2})\colon F_1,F_2\in\mathcal{S}(\mathbb{R}),\,\, F_1,F_2 - \text{are even}\}.$$ For $a=1/r$, $r\in\mathbb{N}$, we consider two generalized translation operators $\tau^{y}$ and $T^y=(\tau^{y}+\tau^ {-y})/2$. Simple integral representations are proposed for them, which make it possible to prove their $L^{p}$-boundedness as $1\le p\le\infty$ for $\lambda=r(2k-1)>-1/2$. For $\lambda\ge 0$ the generalized translation operator $T^y$ is positive and its norm is equal to one. Two convolutions are defined and Young's theorem is proved for them. For generalized means defined using convolutions, a sufficient $L^{p}$-convergence condition is established. The generalized analogues of the Gauss–Weierstrass, Poisson, and Bochner–Riesz means are studied.
Keywords: $(k,a)$-generalized Fourier transform, generalized translation operator, generalized means.
Mots-clés : convolution
@article{TIMM_2023_29_4_a7,
     author = {V. I. Ivanov},
     title = {One-dimensional $(k,a)$-generalized {Fourier} transform},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {92--108},
     year = {2023},
     volume = {29},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2023_29_4_a7/}
}
TY  - JOUR
AU  - V. I. Ivanov
TI  - One-dimensional $(k,a)$-generalized Fourier transform
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2023
SP  - 92
EP  - 108
VL  - 29
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/TIMM_2023_29_4_a7/
LA  - ru
ID  - TIMM_2023_29_4_a7
ER  - 
%0 Journal Article
%A V. I. Ivanov
%T One-dimensional $(k,a)$-generalized Fourier transform
%J Trudy Instituta matematiki i mehaniki
%D 2023
%P 92-108
%V 29
%N 4
%U http://geodesic.mathdoc.fr/item/TIMM_2023_29_4_a7/
%G ru
%F TIMM_2023_29_4_a7
V. I. Ivanov. One-dimensional $(k,a)$-generalized Fourier transform. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 29 (2023) no. 4, pp. 92-108. http://geodesic.mathdoc.fr/item/TIMM_2023_29_4_a7/

[1] Dunkl C.F., “Integral kernels with reflection group invariance”, Canad. J. Math., 43:6 (1991), 1213–1227 | DOI | MR | Zbl

[2] Rösler M., “Dunkl operators. Theory and applications”, Orthogonal Polynomials and Special Functions, Lecture Notes in Math., 1817, eds. Erik Koelink, Walter van Assche, Springer, Berlin; Heidelberg, 2002, 93–135 | DOI | MR

[3] Ben Saïd S., Kobayashi T., Ørsted B., “Laguerre semigroup and Dunkl operators”, Compos. Math., 148:4 (2012), 1265–1336 | DOI | MR | Zbl

[4] Gorbachev D., Ivanov V., Tikhonov S., “On the kernel of the $(\kappa,a)$-Generalized Fourier transform”, Forum of Math., Sigma, 11 (2023), e72 | DOI | MR

[5] Kobayashi T., Mano G., The Schr{ö}dinger model for the minimal representation of the indefinite orthogonal group $O(p;q)$, Memoirs of the American Mathematical Societies, 213, no. 1000, 2011, 132 pp. | DOI | MR

[6] Gorbachev D.V., Ivanov V.I., Tikhonov S.Yu., “Pitt's inequalities and uncertainty principle for generalized Fourier transform”, Int. Math. Res. Notices, 2016:23 (2016), 7179–7200 | DOI | MR | Zbl

[7] Boubatra M.A., Negzaoui S, Sifi M., “A new product formula involving Bessel functions”, Integral Transforms Spec. Func., 33:3 (2022), 247–263 | DOI | MR | Zbl

[8] Mejjaoli H., “Deformed Stockwell transform and applications on the reproducing kernel theory”, Int. J. Reprod. Kernels, 1:1 (2022), 1–39 | MR

[9] Mejjaoli H., Trimèche K., “Localization operators and scalogram associated with the deformed Hankel wavelet transform”, Mediterr. J. Math., 20:3 (2023), 186 | DOI | MR | Zbl

[10] Gorbachev D. V., Ivanov V. I. , Tikhonov S. Yu., “Positive $Lp$-bounded Dunkl-type generalized translation operator and its applications”, Constr. Approx., 49:3 (2019), 555–605 | DOI | MR | Zbl

[11] Vatson G.N., Teoriya besselevykh funktsii, IL, M., 1949, 798 pp.

[12] Beitmen G., Erdeii A., Vysshie transtsendentnye funktsii, v. 2, Nauka, M., 1966, 297 pp.

[13] Platonov S.S., “Garmonicheskii analiz Besselya i priblizhenie funktsii na polupryamoi”, Izv. RAN. Ser. matematicheskaya, 71:5 (2007), 149–196 | DOI | MR | Zbl

[14] Khyuitt E., Ross K., Abstraktnyi garmonicheskii analiz, v. 1, Nauka, M., 1975, 656 pp.

[15] Thangavelu S., Xu Y., “Convolution operator and maximal function for Dunkl transform”, J. d'Analyse. Math., 97 (2005), 25–55 | DOI | MR

[16] Beitmen G., Erdeii A., Tablitsy integralnykh preobrazovanii, v. 2, Nauka, M., 1970, 328 pp.