Mots-clés : convolution
@article{TIMM_2023_29_4_a7,
author = {V. I. Ivanov},
title = {One-dimensional $(k,a)$-generalized {Fourier} transform},
journal = {Trudy Instituta matematiki i mehaniki},
pages = {92--108},
year = {2023},
volume = {29},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TIMM_2023_29_4_a7/}
}
V. I. Ivanov. One-dimensional $(k,a)$-generalized Fourier transform. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 29 (2023) no. 4, pp. 92-108. http://geodesic.mathdoc.fr/item/TIMM_2023_29_4_a7/
[1] Dunkl C.F., “Integral kernels with reflection group invariance”, Canad. J. Math., 43:6 (1991), 1213–1227 | DOI | MR | Zbl
[2] Rösler M., “Dunkl operators. Theory and applications”, Orthogonal Polynomials and Special Functions, Lecture Notes in Math., 1817, eds. Erik Koelink, Walter van Assche, Springer, Berlin; Heidelberg, 2002, 93–135 | DOI | MR
[3] Ben Saïd S., Kobayashi T., Ørsted B., “Laguerre semigroup and Dunkl operators”, Compos. Math., 148:4 (2012), 1265–1336 | DOI | MR | Zbl
[4] Gorbachev D., Ivanov V., Tikhonov S., “On the kernel of the $(\kappa,a)$-Generalized Fourier transform”, Forum of Math., Sigma, 11 (2023), e72 | DOI | MR
[5] Kobayashi T., Mano G., The Schr{ö}dinger model for the minimal representation of the indefinite orthogonal group $O(p;q)$, Memoirs of the American Mathematical Societies, 213, no. 1000, 2011, 132 pp. | DOI | MR
[6] Gorbachev D.V., Ivanov V.I., Tikhonov S.Yu., “Pitt's inequalities and uncertainty principle for generalized Fourier transform”, Int. Math. Res. Notices, 2016:23 (2016), 7179–7200 | DOI | MR | Zbl
[7] Boubatra M.A., Negzaoui S, Sifi M., “A new product formula involving Bessel functions”, Integral Transforms Spec. Func., 33:3 (2022), 247–263 | DOI | MR | Zbl
[8] Mejjaoli H., “Deformed Stockwell transform and applications on the reproducing kernel theory”, Int. J. Reprod. Kernels, 1:1 (2022), 1–39 | MR
[9] Mejjaoli H., Trimèche K., “Localization operators and scalogram associated with the deformed Hankel wavelet transform”, Mediterr. J. Math., 20:3 (2023), 186 | DOI | MR | Zbl
[10] Gorbachev D. V., Ivanov V. I. , Tikhonov S. Yu., “Positive $Lp$-bounded Dunkl-type generalized translation operator and its applications”, Constr. Approx., 49:3 (2019), 555–605 | DOI | MR | Zbl
[11] Vatson G.N., Teoriya besselevykh funktsii, IL, M., 1949, 798 pp.
[12] Beitmen G., Erdeii A., Vysshie transtsendentnye funktsii, v. 2, Nauka, M., 1966, 297 pp.
[13] Platonov S.S., “Garmonicheskii analiz Besselya i priblizhenie funktsii na polupryamoi”, Izv. RAN. Ser. matematicheskaya, 71:5 (2007), 149–196 | DOI | MR | Zbl
[14] Khyuitt E., Ross K., Abstraktnyi garmonicheskii analiz, v. 1, Nauka, M., 1975, 656 pp.
[15] Thangavelu S., Xu Y., “Convolution operator and maximal function for Dunkl transform”, J. d'Analyse. Math., 97 (2005), 25–55 | DOI | MR
[16] Beitmen G., Erdeii A., Tablitsy integralnykh preobrazovanii, v. 2, Nauka, M., 1970, 328 pp.