On extremal trigonometric polynomials
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 29 (2023) no. 4, pp. 70-91 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

Let $\mathscr{F}_n$ be the set of all trigonometric polynomials of order $\le n$, $n\in\mathbb{N}$. For multipliers $H:\mathscr{F}_n\to\mathscr{F}_n$, we prove an interpolation formula $H(f)(t)=\sum_{k=0}^{2n-1}\Lambda_k f\left(t-\tau+{k\pi}/{n}\right),$ which is used to obtain the following inequalities and criteria for an extremal polynomial in them (Theorem 4): $$\int_{\mathbb{T}}J\left(|H(f)(t)|\right)\,dt \le \int_{\mathbb{T}}J\left(\varkappa|f(t)|\right)\,dt\,;\;\; \| H(f)\|_p\leqslant \varkappa\|f\|_p,\,1\le p\le\infty,\;\varkappa=|\Lambda_0|+\ldots+|\Lambda_{2n-1}|>0. $$ Here the function $J$ is convex and nondecreasing on $[0,+\infty)$. The main goal of this work is to describe all extremal polynomials in the above inequalities. Theorem 5 proves that if the function $J$ is convex and strictly increasing on $[0,+\infty)$ and two conditions are satisfied: $(1)$ $\exists s\in\mathbb{Z}:\,\overline{\Lambda_{s}} \Lambda_{s+1}0$ and $(2)$ $\exists \varepsilon\in\mathbb{C}$, $|\varepsilon|=1:$ $\varepsilon \Lambda_k (-1)^k\ge0$, $k\in\mathbb{Z}$, then only polynomials of the form $f(t)=\mu e^{int}+\nu e^{-int}$, $\mu,\nu\in\mathbb{C}$ are extremal in these inequalities. The main cases in this theorem are the cases $p=\infty$ and $p=1$. Theorem 6 proves that if the function $J$ is convex and strictly increasing on $[0,+\infty)$ and the operator $H$ satisfies the Szegö condition (the nonnegativity of a special trigonometric polynomial), then, in all cases different from one exceptional case, only polynomials of the form $f(t)=\mu e^{int}+\nu e^{-int}$, $\mu,\nu\in\mathbb{C}$, are extremal in these inequalities. In the exceptional case, there are other extremal polynomials. In this paper we give general examples of operators $H$ that satisfy the conditions of Theorem 6 (Example 1, Theorems 7 and 8). In particular, S. T. Zavalishchin's operator (Example 2) and the fractional derivative operator $H(f)(t)=f^{(r,\beta)}(t)$, $\beta\in\mathbb{R}$, $r\ge1$, $\varkappa=n^r$ (Corollary 3), satisfy these conditions. In this paper we also describe extremal polynomials in the Trigub and Boas inequalities (for some values of the parameters, not only polynomials of the form $\mu e^{int}+\nu e^{-int}$ are extremal).
Keywords: extremal trigonometric polynomial, Bernstein condition, Szegö condition, Weil–Nagy derivative, Bernstein-Szegö inequality, positive definite function, Boas–Civin method.
@article{TIMM_2023_29_4_a6,
     author = {V. P. Zastavnyi},
     title = {On extremal trigonometric polynomials},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {70--91},
     year = {2023},
     volume = {29},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2023_29_4_a6/}
}
TY  - JOUR
AU  - V. P. Zastavnyi
TI  - On extremal trigonometric polynomials
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2023
SP  - 70
EP  - 91
VL  - 29
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/TIMM_2023_29_4_a6/
LA  - ru
ID  - TIMM_2023_29_4_a6
ER  - 
%0 Journal Article
%A V. P. Zastavnyi
%T On extremal trigonometric polynomials
%J Trudy Instituta matematiki i mehaniki
%D 2023
%P 70-91
%V 29
%N 4
%U http://geodesic.mathdoc.fr/item/TIMM_2023_29_4_a6/
%G ru
%F TIMM_2023_29_4_a6
V. P. Zastavnyi. On extremal trigonometric polynomials. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 29 (2023) no. 4, pp. 70-91. http://geodesic.mathdoc.fr/item/TIMM_2023_29_4_a6/

[1] Bernshtein S.N., “O nailuchshem' priblizhenii nepreryvnykh' funktsii posredstvom' mnogochlenov' dannoi stepeni. I”, Soobsch. Kharkov. matem. obsch. Vtoraya ser., 13:2-3 (1912), 49–144

[2] Riesz M., “Formule d'interpolation pour la dérivée d'un polynome trigonométrique”, C. R. Acad. Sci., 158 (1914), 1152–1154

[3] Riesz M., “Eine trigonometrische Interpolationsformel und einige Ungleichungen für Polynome”, Jahresbericht der Deutschen Mathematiker-Vereinigung, 23 (1914), 354–368

[4] Szegö G., “Über einen Satz des Herrn Serge Bernstein”, Schriften der Königsberger Gelehrten Gesellschaft, 5:4 (1928), 59–70

[5] Zygmund A., Trigonometric series, vol. I, II, v. II, Cambridge Univ. Press, Cambridge, 1959, 364 pp. ; Trigonometricheskie ryady, v. II, Mir Publ., Moscow, 1965, 538 pp. | MR | Zbl

[6] Sz.-Nagy V., “Über gewisse Extremalfragen bei transformierten trigonometrischen Entwicklungen. I. Periodischer Fall”, Berichte der Sächsischen Akademie der Wissenschaften zu Leipzig, 90 (1938), 103–134 | Zbl

[7] Sokolov G.T., “O nekotorykh ekstremalnykh svoistvakh trigonometricheskikh summ”, Izv. AN SSSR. VII seriya: Otd. mat. i estest. nauk, 1935, no. 6-7, 857–884 | Zbl

[8] Lizorkin P.I., “Otsenki trigonometricheskikh integralov i neravenstvo Bernshteina dlya drobnykh proizvodnykh”, Izv. AN SSSR. Ser. matematicheskaya, 29:1 (1965), 109–126 | Zbl

[9] Korneichuk N. P., Babenko V. F., Ligun A. A., Ekstremalnye svoistva polinomov i splainov, Nauk. dumka, AN Ukrainy. In-t matematiki. Kiev, 1992, 304 pp. | MR

[10] Kozko A.I., “The exact constants in the Bernstein-Zygmund-Szegö inequalities with fractional derivatives and the Jackson-Nikolskii inequality for trigonometric polynomials”, East J. Approx., 4:3 (1998), 391–416 | MR | Zbl

[11] Arestov V.V., Glazyrina P.Yu., “Neravenstvo Bernshteina–Sege dlya drobnykh proizvodnykh trigonometricheskikh polinomov”, Tr. In-ta matematiki i mekhaniki UrO RAN, 20:1 (2014), 17–31 | MR

[12] Leonteva A.O., “Neravenstvo Bernshteina–Sege dlya proizvodnoi Rissa trigonometricheskikh polinomov v prostranstvakh $L_p$, $0\le p\le\infty$, s klassicheskim znacheniem tochnoi konstanty”, Mat. sb., 214:3 (2023), 135–152 | DOI | MR

[13] Arestov V.V., “Tochnye neravenstva dlya trigonometricheskikh polinomov otnositelno integralnykh funktsionalov”, Tr. In-ta matematiki i mekhaniki UrO RAN, 16:4 (2010), 38–53

[14] Arestov V.V., “Ob integralnykh neravenstvakh dlya trigonometricheskikh polinomov i ikh proizvodnykh”, Izv. AN SSSR. Ser. matematicheskaya, 45:1 (1981), 3–22

[15] Zastavnyi V.P., “Positive definite functions and sharp inequalities for periodic functions”, Ural Math. J., 3:2 (2017), 82–99 | DOI | MR | Zbl

[16] Stechkin S.B., “Obobschenie nekotorykh neravenstv S.N. Bernshteina”, Izbrannye trudy: Matematika, Nauka. Fizmatlit, M., 1998, 15–18

[17] Bernshtein S.N., “Ob odnoi teoreme Sege”, Sobranie sochinenii, v 4 t., v. II, Konstruktivnaya teoriya funktsii, Izd.-vo AN SSSR, M., 1954, 173–177 | MR

[18] Zavalischin S.T., “O nekotorykh ekstremalnykh svoistvakh trigonometricheskikh polinomov”, Tr. MIAN SSSR, 78 (1965), 3–11

[19] Stechkin S.B., Taikov L.V., “O minimalnykh prodolzheniyakh lineinykh funktsionalov”, Tr. MIAN SSSR, 78 (1965), 12–23

[20] Bernshtein S.N., “O mnogochlenakh, ortogonalnykh na konechnom otrezke”, Sobranie sochinenii, v 4 t., v. II, Konstruktivnaya teoriya funktsii, Izd.-vo AN SSSR, M., 1954, 7–106 | MR

[21] Gorbachev D.V., “Tochnye neravenstva Bernshteina — Nikolskogo dlya polinomov i tselykh funktsii eksponentsialnogo tipa”, Chebyshevskii sb., 22:5 (2021), 58–110 | DOI | MR | Zbl

[22] Zastavnyi V.P., “Odno obobschenie teoremy Sheppa o polozhitelnoi opredelennosti kusochno-lineinoi funktsii”, Mat. zametki, 107:6 (2020), 873–887 | DOI | Zbl

[23] Zastavnyi V.P., Manov A.D., “Polozhitelnaya opredelennost kompleksnoi kusochno-lineinoi funktsii i nekotorye ee primeneniya”, Mat. zametki, 103:4 (2018), 519–535 | DOI | Zbl

[24] Boas R.P., Jr., “The derivative of a trigonometric integral”, J. London Math. Soc., 12 (1937), 164–165 | DOI | MR | Zbl

[25] Civin P., “Inequalities for trigonometric integrals”, Duke Math. J., 8:4 (1941), 656–665 | DOI | MR | Zbl

[26] Boas R.P., Jr., Entire Functions, Acad. Press, NY, 1954, 275 pp. | MR | Zbl

[27] Timan A.F., Teoriya priblizheniya funktsii deistvitelnogo peremennogo, Gos. izd-vo fiz.-mat. lit., M., 1960, 624 pp.

[28] Vinogradov O.L., “Tochnye otsenki pogreshnostei formul tipa chislennogo differentsirovaniya na klassakh tselykh funktsii konechnoi stepeni”, Sib. mat. zhurn., 48:3 (2007), 538–555 | MR | Zbl

[29] Vinogradov O.L., “Tochnye neravenstva tipa Bernshteina dlya multiplikatorov Fure — Danklya”, Mat. sb., 214:1 (2023), 3–30 | DOI | MR

[30] Kakhan Zh.-P., Absolyutno skhodyaschiesya ryady Fure, Mir, M., 1976

[31] Trigub R.M., “Fourier multipliers and K-functionals in spaces of smooth functions”, Ukr. Math. Bull., 2:2 (2005), 239–284 | MR | Zbl