Kolmogorov widths of the intersection of two weighted Sobolev classes on an interval with the same smoothness
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 29 (2023) no. 4, pp. 55-63 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

Order estimates are obtained for the Kolmogorov $n$-widths of the intersection of two weighted Sobolev classes on an interval with the same smoothness for large $n$. The weights have a general form, and one of them is in a certain sense significantly less than the other. The constants in the order equality are independent of the weights. Order estimates are obtained for the Kolmogorov $n$-widths of the intersection of two weighted Sobolev classes $W^r_{p_1,g_1}[a,\,b]$ and $W^r_{p_2,g_2}[a,\,b]$ in the weighted Lebesgue space $L_{q,v}[a,\,b]$ for large $n$. It is assumed that $p_1>p_2$. The weights $g_1$, $g_2$, and $v$ have general form. The conditions on these functions are such that the order of the width in $n$ is the same as for the unweighted Sobolev class $W^r_{p_1}[a,\,b]$. In addition, the weight $g_2$ in a certain sense is considerably less than the weight $g_1$. The constants in the order equality for the width depend only on $p_1$, $p_2$, $q$, and $r$. The upper estimate reduces to the use of our earlier result (2010) for one weighted Sobolev class. The lower estimate is derived by using the discretization method and estimating the width of the intersection of the $p_1$- and $p_2$-ellipsoids. Then a polyhedron of special form is inscribed in this set, and the required lower estimate is obtained for the width of the polyhedron under an appropriate choice of the parameters.
Keywords: Kolmogorov widths, intersection of function classes.
@article{TIMM_2023_29_4_a4,
     author = {A. A. Vasil'eva},
     title = {Kolmogorov widths of the intersection of two weighted {Sobolev} classes on an interval with the same smoothness},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {55--63},
     year = {2023},
     volume = {29},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2023_29_4_a4/}
}
TY  - JOUR
AU  - A. A. Vasil'eva
TI  - Kolmogorov widths of the intersection of two weighted Sobolev classes on an interval with the same smoothness
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2023
SP  - 55
EP  - 63
VL  - 29
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/TIMM_2023_29_4_a4/
LA  - ru
ID  - TIMM_2023_29_4_a4
ER  - 
%0 Journal Article
%A A. A. Vasil'eva
%T Kolmogorov widths of the intersection of two weighted Sobolev classes on an interval with the same smoothness
%J Trudy Instituta matematiki i mehaniki
%D 2023
%P 55-63
%V 29
%N 4
%U http://geodesic.mathdoc.fr/item/TIMM_2023_29_4_a4/
%G ru
%F TIMM_2023_29_4_a4
A. A. Vasil'eva. Kolmogorov widths of the intersection of two weighted Sobolev classes on an interval with the same smoothness. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 29 (2023) no. 4, pp. 55-63. http://geodesic.mathdoc.fr/item/TIMM_2023_29_4_a4/

[1] Vasileva A.A., “Otsenki poperechnikov vesovykh sobolevskikh klassov”, Mat. sb., 201:7 (2010), 15–52 | DOI | Zbl

[2] Lifshits M.A., Linde W., “Approximation and entropy numbers of Volterra operators with application to Brownian motion”, Mem. Amer. Math. Soc., 157, Amer. Math. Soc., Providence, RI, 2002 | DOI | MR

[3] Edmunds D.E., Lang J., “Approximation numbers and Kolmogorov widths of Hardy-type operators in a non-homogeneous case”, Math. Nachr., 297:7 (2006), 727–742 | DOI | MR

[4] Lomakina E.N., Stepanov V.D., “On asymptotic behaviour of the approximation numbers and estimates of Schatten–von Neumann norms of the Hardy-type integral operators”, Function spaces and applications, Proc. of Delhi Conf. (New Delhi, India, 1997), Narosa Publ., New Delhi, 2000, 153–187 | MR | Zbl

[5] Lomakina E.N., Stepanov V.D., “Asimptoticheskie otsenki approksimativnykh i entropiinykh chisel odnovesovogo operatora Rimana — Liuvillya”, Mat. tr., 9:1 (2006), 52–100 | MR | Zbl

[6] Tikhomirov V.M., “Teoriya priblizhenii”, Itogi nauki i tekhniki. Sovremennye problemy matematiki. Fundamentalnye napravleniya, 14, VINITI AN SSSR, M., 1987, 103–260

[7] Kashin B.S., “Poperechniki nekotorykh konechnomernykh mnozhestv i klassov gladkikh funktsii”, Izv. AN SSSR. Ser. matematicheskaya, 41:2 (1977), 334–351 | MR | Zbl

[8] Vasileva A.A., “Kolmogorovskie poperechniki klassov Soboleva na otrezke s ogranicheniyami na variatsiyu”, Tr. In-ta matematiki i mekhaniki UrO RAN, 25:2 (2019), 48–66 | DOI | MR

[9] Galeev E.M., “Poperechniki po Kolmogorovu klassov periodicheskikh funktsii odnoi i neskolkikh peremennykh”, Izv. AN SSSR. Ser. matematicheskaya, 54:2 (1990), 418–430

[10] Vasileva A.A., “Kolmogorovskie poperechniki peresechenii vesovykh klassov Soboleva na otrezke s ogranicheniyami na nulevuyu i pervuyu proizvodnye”, Izv. RAN. Ser. matematicheskaya, 85:1 (2021), 3–26 | DOI | MR | Zbl

[11] Pietsch A., “$s$-numbers of operators in Banach space”, Studia Math., 51 (1974), 201–223 | DOI | MR | Zbl

[12] Stesin M.I., “Aleksandrovskie poperechniki konechnomernykh mnozhestv i klassov gladkikh funktsii”, Dokl. AN SSSR, 220:6 (1975), 1278–1281 | MR | Zbl

[13] Gluskin E.D., “Normy sluchainykh matrits i poperechniki konechnomernykh mnozhestv”, Mat. sb., 120(162):2 (1983), 180–189 | MR | Zbl

[14] Garnaev A.Yu., Gluskin E.D., “O poperechnikakh evklidovogo shara”, Dokl. AN SSSR, 277:5 (1984), 1048–1052 | MR | Zbl

[15] Gluskin E.D., “Peresecheniya kuba s oktaedrom plokho approksimiruyutsya podprostranstvami maloi razmernosti”, Priblizhenie funktsii spetsialnymi klassami operatorov, mezhvuz. sb. nauchn. tr., Min. pros. RSFSR, Vologodskii gos. ped. in-t, Vologda, 1987, 35–41

[16] Maiorov V.E., “Diskretizatsiya zadachi o poperechnikakh”, Uspekhi mat. nauk, 30:6(186) (1975), 179–180 | MR | Zbl