A Graph with a Locally Projective Vertex-Transitive Group of Automorphisms  Aut($Fi_{22}$) Which Has a~Nontrivial Stabilizer of a Ball of Radius~$2$
    
    
  
  
  
      
      
      
        
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 29 (2023) no. 4, pp. 274-278
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			Earlier, to confirm that one of the possibilities for the structure of vertex stabilizers of graphs with projective suborbits is realizable, we announced the existence of a connected graph $\Gamma$ admitting a group of automorphisms $G$ which is isomorphic to Aut$(Fi_{22})$ and has the following properties. First, the group $G$ acts transitively on the set of vertices of $\Gamma$, but intransitively on the set of $3$-arcs of $\Gamma$. Second, the stabilizer in $G$ of a vertex of $\Gamma$ induces on the neighborhood of this vertex a group $PSL_3(3)$ in its natural doubly transitive action. Third, the pointwise stabilizer in $G$ of a ball of radius 2 in $\Gamma$ is nontrivial. In this paper, we construct such a graph $\Gamma$ with $G ={\rm Aut}(\Gamma)$.
			
            
            
            
          
        
      
                  
                    
                    
                    
                    
                    
                      
Keywords: 
graph, transitive locally projective group of automorphisms, Fischer group $Fi_{22}$.
                    
                  
                
                
                @article{TIMM_2023_29_4_a21,
     author = {V. I. Trofimov},
     title = {A {Graph} with a {Locally} {Projective} {Vertex-Transitive} {Group} of {Automorphisms}  {Aut(}$Fi_{22}$) {Which} {Has} {a~Nontrivial} {Stabilizer} of a {Ball} of {Radius~}$2$},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {274--278},
     publisher = {mathdoc},
     volume = {29},
     number = {4},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2023_29_4_a21/}
}
                      
                      
                    TY  - JOUR
AU  - V. I. Trofimov
TI  - A Graph with a Locally Projective Vertex-Transitive Group of Automorphisms  Aut($Fi_{22}$) Which Has a~Nontrivial Stabilizer of a Ball of Radius~$2$
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2023
SP  - 274
EP  - 278
VL  - 29
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TIMM_2023_29_4_a21/
LA  - ru
ID  - TIMM_2023_29_4_a21
ER  - 
                      
                      
                    %0 Journal Article
%A V. I. Trofimov
%T A Graph with a Locally Projective Vertex-Transitive Group of Automorphisms  Aut($Fi_{22}$) Which Has a~Nontrivial Stabilizer of a Ball of Radius~$2$
%J Trudy Instituta matematiki i mehaniki
%D 2023
%P 274-278
%V 29
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TIMM_2023_29_4_a21/
%G ru
%F TIMM_2023_29_4_a21
                      
                      
                    V. I. Trofimov. A Graph with a Locally Projective Vertex-Transitive Group of Automorphisms  Aut($Fi_{22}$) Which Has a~Nontrivial Stabilizer of a Ball of Radius~$2$. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 29 (2023) no. 4, pp. 274-278. http://geodesic.mathdoc.fr/item/TIMM_2023_29_4_a21/
                  
                