A Graph with a Locally Projective Vertex-Transitive Group of Automorphisms Aut($Fi_{22}$) Which Has a Nontrivial Stabilizer of a Ball of Radius $2$
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 29 (2023) no. 4, pp. 274-278 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

Earlier, to confirm that one of the possibilities for the structure of vertex stabilizers of graphs with projective suborbits is realizable, we announced the existence of a connected graph $\Gamma$ admitting a group of automorphisms $G$ which is isomorphic to Aut$(Fi_{22})$ and has the following properties. First, the group $G$ acts transitively on the set of vertices of $\Gamma$, but intransitively on the set of $3$-arcs of $\Gamma$. Second, the stabilizer in $G$ of a vertex of $\Gamma$ induces on the neighborhood of this vertex a group $PSL_3(3)$ in its natural doubly transitive action. Third, the pointwise stabilizer in $G$ of a ball of radius 2 in $\Gamma$ is nontrivial. In this paper, we construct such a graph $\Gamma$ with $G ={\rm Aut}(\Gamma)$.
Keywords: graph, transitive locally projective group of automorphisms, Fischer group $Fi_{22}$.
@article{TIMM_2023_29_4_a21,
     author = {V. I. Trofimov},
     title = {A {Graph} with a {Locally} {Projective} {Vertex-Transitive} {Group} of {Automorphisms} {Aut(}$Fi_{22}$) {Which} {Has} {a~Nontrivial} {Stabilizer} of a {Ball} of {Radius~}$2$},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {274--278},
     year = {2023},
     volume = {29},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2023_29_4_a21/}
}
TY  - JOUR
AU  - V. I. Trofimov
TI  - A Graph with a Locally Projective Vertex-Transitive Group of Automorphisms Aut($Fi_{22}$) Which Has a Nontrivial Stabilizer of a Ball of Radius $2$
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2023
SP  - 274
EP  - 278
VL  - 29
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/TIMM_2023_29_4_a21/
LA  - ru
ID  - TIMM_2023_29_4_a21
ER  - 
%0 Journal Article
%A V. I. Trofimov
%T A Graph with a Locally Projective Vertex-Transitive Group of Automorphisms Aut($Fi_{22}$) Which Has a Nontrivial Stabilizer of a Ball of Radius $2$
%J Trudy Instituta matematiki i mehaniki
%D 2023
%P 274-278
%V 29
%N 4
%U http://geodesic.mathdoc.fr/item/TIMM_2023_29_4_a21/
%G ru
%F TIMM_2023_29_4_a21
V. I. Trofimov. A Graph with a Locally Projective Vertex-Transitive Group of Automorphisms Aut($Fi_{22}$) Which Has a Nontrivial Stabilizer of a Ball of Radius $2$. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 29 (2023) no. 4, pp. 274-278. http://geodesic.mathdoc.fr/item/TIMM_2023_29_4_a21/

[1] Trofimov V.I., “Vertex stabilizers of locally projective groups of automorphisms of graphs: a summary”, Groups, Combinatorics and Geometry (Durham 2001), World Sci. Publ., NJ etc., 2003, 313–326 | DOI | MR | Zbl

[2] Trofimov V.I., “Grafy s proektivnymi podorbitami. Sluchai malykh kharakteristik. I”, Izv. RAN. Ser. matematicheskaya, 58:5 (1994), 124–171 | Zbl

[3] Trofimov V.I., “Stabilizatory vershin grafov s proektivnymi podorbitami”, Dokl. AN SSSR, 315:3 (1990), 544–546 | Zbl

[4] Trofimov V.I., “Grafy s proektivnymi podorbitami. Isklyuchitelnye sluchai kharakteristiki 2. I”, Izv. RAN. Ser. matematicheskaya, 62:6 (1998), 159–222 | DOI | MR | Zbl

[5] Conway J.H. [et al.], Atlas of finite groups, Clarendon Press, Oxford, 1995, 252 pp.

[6] Wilson R.A., “On maximal subgroups of the Fischer group $Fi_{22}$”, Math. Proc. Cambridge Philos. Soc., 95 (1984), 197–222 | DOI | MR | Zbl

[7] Kleidman P.B., Wilson R.A., “The maximal subgroups of $Fi_{22}$”, Math. Proc. Cambridge Philos. Soc., 102 (1987), 17–23 | DOI | MR | Zbl

[8] Kitazume M., Yoshiara S., “The radical subgroups of the Fischer simple groups”, J. Algebra, 255 (2002), 22–58 | DOI | MR | Zbl

[9] Fischer B., Finite groups generated by 3-transpositions, WMI Preprints, University of Warwick lecture notes, University of Warwick, Coventry (UK), 1969

[10] Gardiner A., “Arc transitivity in graphs”, Quart. J. Math. Oxford (2), 24 (1973), 399–407 | DOI | MR | Zbl