@article{TIMM_2023_29_4_a21,
author = {V. I. Trofimov},
title = {A {Graph} with a {Locally} {Projective} {Vertex-Transitive} {Group} of {Automorphisms} {Aut(}$Fi_{22}$) {Which} {Has} {a~Nontrivial} {Stabilizer} of a {Ball} of {Radius~}$2$},
journal = {Trudy Instituta matematiki i mehaniki},
pages = {274--278},
year = {2023},
volume = {29},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TIMM_2023_29_4_a21/}
}
TY - JOUR
AU - V. I. Trofimov
TI - A Graph with a Locally Projective Vertex-Transitive Group of Automorphisms Aut($Fi_{22}$) Which Has a Nontrivial Stabilizer of a Ball of Radius $2$
JO - Trudy Instituta matematiki i mehaniki
PY - 2023
SP - 274
EP - 278
VL - 29
IS - 4
UR - http://geodesic.mathdoc.fr/item/TIMM_2023_29_4_a21/
LA - ru
ID - TIMM_2023_29_4_a21
ER -
%0 Journal Article
%A V. I. Trofimov
%T A Graph with a Locally Projective Vertex-Transitive Group of Automorphisms Aut($Fi_{22}$) Which Has a Nontrivial Stabilizer of a Ball of Radius $2$
%J Trudy Instituta matematiki i mehaniki
%D 2023
%P 274-278
%V 29
%N 4
%U http://geodesic.mathdoc.fr/item/TIMM_2023_29_4_a21/
%G ru
%F TIMM_2023_29_4_a21
V. I. Trofimov. A Graph with a Locally Projective Vertex-Transitive Group of Automorphisms Aut($Fi_{22}$) Which Has a Nontrivial Stabilizer of a Ball of Radius $2$. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 29 (2023) no. 4, pp. 274-278. http://geodesic.mathdoc.fr/item/TIMM_2023_29_4_a21/
[1] Trofimov V.I., “Vertex stabilizers of locally projective groups of automorphisms of graphs: a summary”, Groups, Combinatorics and Geometry (Durham 2001), World Sci. Publ., NJ etc., 2003, 313–326 | DOI | MR | Zbl
[2] Trofimov V.I., “Grafy s proektivnymi podorbitami. Sluchai malykh kharakteristik. I”, Izv. RAN. Ser. matematicheskaya, 58:5 (1994), 124–171 | Zbl
[3] Trofimov V.I., “Stabilizatory vershin grafov s proektivnymi podorbitami”, Dokl. AN SSSR, 315:3 (1990), 544–546 | Zbl
[4] Trofimov V.I., “Grafy s proektivnymi podorbitami. Isklyuchitelnye sluchai kharakteristiki 2. I”, Izv. RAN. Ser. matematicheskaya, 62:6 (1998), 159–222 | DOI | MR | Zbl
[5] Conway J.H. [et al.], Atlas of finite groups, Clarendon Press, Oxford, 1995, 252 pp.
[6] Wilson R.A., “On maximal subgroups of the Fischer group $Fi_{22}$”, Math. Proc. Cambridge Philos. Soc., 95 (1984), 197–222 | DOI | MR | Zbl
[7] Kleidman P.B., Wilson R.A., “The maximal subgroups of $Fi_{22}$”, Math. Proc. Cambridge Philos. Soc., 102 (1987), 17–23 | DOI | MR | Zbl
[8] Kitazume M., Yoshiara S., “The radical subgroups of the Fischer simple groups”, J. Algebra, 255 (2002), 22–58 | DOI | MR | Zbl
[9] Fischer B., Finite groups generated by 3-transpositions, WMI Preprints, University of Warwick lecture notes, University of Warwick, Coventry (UK), 1969
[10] Gardiner A., “Arc transitivity in graphs”, Quart. J. Math. Oxford (2), 24 (1973), 399–407 | DOI | MR | Zbl