Special factors in the restrictions of irreducible modules of classical groups to subsystem subgroups with two simple components
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 29 (2023) no. 4, pp. 259-273 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

For restrictions of $p$-restricted irreducible modules of classical algebraic groups in odd characteristic $p$ with highest weights that are relatively large with respect to $p$ to a subsystem subgroup $H$ of maximal rank with two main components $H_1$ and $H_2$ under slight constraints restrictions on the ranks of the subgroups $H_1$ and $H_2$, a lower bound is found for the number of composition factors that are $p$-large for the subgroup $H_1$ and not too small for $H_2$; the bound grows as the highest weight increases. On this basis, lower bounds are obtained for the number of Jordan blocks of maximal size for the images of certain unipotent elements in the corresponding representations of the groups.
Keywords: classical algebraic groups, modular representations, restrictions, composition factors, Jordan blocks.
Mots-clés : unipotent elements
@article{TIMM_2023_29_4_a20,
     author = {I. D. Suprunenko and T. S. Busel and A. A. Osinovskaya},
     title = {Special factors in the restrictions of irreducible modules of classical groups to subsystem subgroups with two simple components},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {259--273},
     year = {2023},
     volume = {29},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2023_29_4_a20/}
}
TY  - JOUR
AU  - I. D. Suprunenko
AU  - T. S. Busel
AU  - A. A. Osinovskaya
TI  - Special factors in the restrictions of irreducible modules of classical groups to subsystem subgroups with two simple components
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2023
SP  - 259
EP  - 273
VL  - 29
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/TIMM_2023_29_4_a20/
LA  - ru
ID  - TIMM_2023_29_4_a20
ER  - 
%0 Journal Article
%A I. D. Suprunenko
%A T. S. Busel
%A A. A. Osinovskaya
%T Special factors in the restrictions of irreducible modules of classical groups to subsystem subgroups with two simple components
%J Trudy Instituta matematiki i mehaniki
%D 2023
%P 259-273
%V 29
%N 4
%U http://geodesic.mathdoc.fr/item/TIMM_2023_29_4_a20/
%G ru
%F TIMM_2023_29_4_a20
I. D. Suprunenko; T. S. Busel; A. A. Osinovskaya. Special factors in the restrictions of irreducible modules of classical groups to subsystem subgroups with two simple components. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 29 (2023) no. 4, pp. 259-273. http://geodesic.mathdoc.fr/item/TIMM_2023_29_4_a20/

[1] Burbaki N., Gruppy i algebry Li, gl. IV-VI, Mir, M., 1972, 334 pp. | MR

[2] Suprunenko I.D., “O povedenii unipotentnykh elementov v modulyarnykh predstavleniyakh klassicheskikh grupp s bolshimi starshimi vesami”, Dokl. NAN Belarusi, 53:1 (2009), 27–32 | MR | Zbl

[3] Steinberg R., Lektsii o gruppakh Shevalle, Mir, M., 1975, 264 pp.

[4] Burness T.C., Ghandour S., Marion C., Testerman D.M., Irreducible almost simple subgroups of classical algebraic groups, Memoirs of the AMS, 236, 2015, 110 pp. | DOI | MR

[5] Burness T.C., Ghandour S., Testerman D.M., Irreducible geometric subgroups of classical algebraic groups, Memoirs of the AMS, 239, 2015, 100 pp. | MR

[6] Cavallin M., Testerman D.M., “A new family of irreducible subgroups of the orthogonal algebraic groups”, Trans. Amer. Math. Soc. Ser. B, 6:2 (2019), 45–79 | DOI | MR | Zbl

[7] Ghandour S., “Irreducible disconnected subgroups of exceptional algebraic groups”, J. Algebra, 323 (2010), 2671–2709 | DOI | MR | Zbl

[8] Korhonen M., Reductive overgroups of distinguished unipotent elements in simple algebraic groups, Ph.D. Thesis, EPFL, Lausanne, 2017, 241 pp. | DOI

[9] Liebeck M.W., Seitz G.M., Testerman D.M., “Distinguished unipotent elements and multiplicity-free subgroups of simple algebraic groups”, Pacific J. Math., 279:1-2 (2015), 357–382 | DOI | MR | Zbl

[10] Lubeck F., “Small degree representations of finite Chevalley groups in defining characteristic”, LMS J. Comput. Math., 4 (2001), 135–169 | DOI | MR | Zbl

[11] Seitz G.M., The maximal subgroups of classical algebraic groups, Memoirs of the AMS, 365, 1987, 286 pp. | MR | Zbl

[12] Smith S., “Irreducible modules and parabolic subgroups”, J. Algebra, 75 (1982), 286–289 | DOI | MR | Zbl

[13] Suprunenko I.D., “On Jordan blocks of elements of order $p$ in irreducible representations of classical groups with $p$-large highest weights”, J. Algebra, 191 (1997), 589–627 | DOI | MR | Zbl

[14] Suprunenko I.D., The minimal polynomials of unipotent elements in irreducible representations of the classical groups in odd characteristic, Memoirs of the Amer. Math. Soc., 200, no. 939, 2009, 154 pp. | DOI | MR

[15] Suprunenko I.D., “Special composition factors in restrictions of representations of special linear and symplectic groups to subsystem subgroups with two simple components”, Tr. In-ta matematiki, 26:1 (2018), 113–133 | MR

[16] Testerman D.M., Irreducible subgroups of exceptional algebraic groups , Memoirs of the AMS, 390, 1988, 190 pp. | MR | Zbl