AT-groups
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 29 (2023) no. 4, pp. 241-258 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

Periodic nonlocally finite (Burnside) groups of infinite period are studied. The first explicitly given example of such a group was proposed by S. V. Aleshin in 1972. His construction was generalized to AT-groups, which are automorphism groups of trees. A number of well-known problems have been solved with the help of AT-groups. This work is a continuation and development of the previous article by one of the authors. A new strategy for studying AT-groups has been implemented. The examples of Alyoshin, Sushanskii, and Gupta, which have already become classical, but, as it turned out, are poorly studied, are reviewed again. A well-studied example of Grigorchuk's 2-group is generalized and reviewed in a new way. New classes of AT-groups are introduced. Tasks for the hour of problems are proposed.
Keywords: Burnside groups, residually finite groups, finiteness conditions, AT-groups, trees, wreath products.
@article{TIMM_2023_29_4_a19,
     author = {A. V. Rozhkov and V. Yu. Barsukova},
     title = {AT-groups},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {241--258},
     year = {2023},
     volume = {29},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2023_29_4_a19/}
}
TY  - JOUR
AU  - A. V. Rozhkov
AU  - V. Yu. Barsukova
TI  - AT-groups
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2023
SP  - 241
EP  - 258
VL  - 29
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/TIMM_2023_29_4_a19/
LA  - ru
ID  - TIMM_2023_29_4_a19
ER  - 
%0 Journal Article
%A A. V. Rozhkov
%A V. Yu. Barsukova
%T AT-groups
%J Trudy Instituta matematiki i mehaniki
%D 2023
%P 241-258
%V 29
%N 4
%U http://geodesic.mathdoc.fr/item/TIMM_2023_29_4_a19/
%G ru
%F TIMM_2023_29_4_a19
A. V. Rozhkov; V. Yu. Barsukova. AT-groups. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 29 (2023) no. 4, pp. 241-258. http://geodesic.mathdoc.fr/item/TIMM_2023_29_4_a19/

[6] Golod E.S., “O nil-algebrakh i finitno approksimiruemykh gruppakh”, Izv. AN SSSR. Ser. matematicheskaya, 28:2 (1964), 273–276

[7] Aleshin S.V., “Konechnye avtomaty i problema Bernsaida o periodicheskikh gruppakh”, Mat. zametki, 11:3 (1972), 319–328 | MR | Zbl

[8] Suschanskii V.I., “Periodicheskie $p$-gruppy podstanovok i neogranichennaya problema Bernsaida”, Dokl. AN SSSR, 247:3 (1979), 561–565 | MR

[9] Grigorchuk R.I., “K probleme Bernsaida o periodicheskikh gruppakh”, Funkts. analiz i ego prilozheniya, 14:1 (1980), 53–54 | MR | Zbl

[10] Gupta N., Sidki S., “Some infinite p-groups”, Algebra i logika, 22:5 (1983), 584–589 | MR | Zbl

[11] Rozhkov A.V., “O podgruppakh beskonechnykh konechno porozhdennykh $p$-grupp”, Mat. sb., 129(171):3 (1986), 422–433 | Zbl

[12] Grigorchuk R.I., “Stepeni rosta konechno-porozhdennykh grupp i invariantnoe srednee”, Izv. AN SSSR. Ser. matematicheskaya, 48:5 (1984), 572–589

[13] Rozhkov A.V., Usloviya konechnosti v gruppakh avtomorfizmov derevev, dis. \ldots d-r fiz.-mat. nauk, Kranoyarsk. gos. un-t., Krasnoyarsk, 1997, 230 pp.

[14] The Kourovka notebook. Unsolved problems in group theory, 20th ed., eds. V.D. Mazurov, E.I. Khukhro, Inst. Math. SO RAN Publ., Novosibirsk, 2022, 269 pp. URL: https://kourovka-notebook.org/

[15] Rozhkov A.V., “AT-gruppy, ne yavlyayuschiesya AT-podgruppami: perekhod ot $AT_\omega$-grupp k $AT_\Omega$-gruppam”, Tr. In-ta matematiki i mekhaniki UrO RAN, 28:1 (2022), 218–231 | DOI | MR

[16] Merzlyakov Yu.I., “O beskonechnykh konechno-porozhdennykh periodicheskikh gruppakh”, Dokl. AN SSSR, 268:4 (1983), 803–805 | MR | Zbl

[17] Pervova E.L., “Kongruents-svoistvo AT-grupp”, Algebra i logika, 41:5 (2002), 553–567 | MR | Zbl

[18] Olshanskii A.Yu., Geometriya opredelyayuschikh sootnoshenii v gruppakh, Nauka, M., 1989, 448 pp. | MR

[19] Kargapolov M.I., Merzlyakov Yu.I., Osnovy teorii grupp, 3-e izd., Nauka, M., 1982, 288 pp. | MR

[20] Sozutov A.I., “O nekotorykh beskonechnykh gruppakh s silno vlozhennoi podgruppoi”, Algebra i logika, 39:5 (2000), 602–617 | MR

[21] Lysenok I.G., “Sistema opredelyayuschikh sootnoshenii dlya gruppy Grigorchuka”, Mat. zametki, 38:4 (1985), 503–516 | MR | Zbl

[22] Grigorchuk R.I., “Vetvyaschiesya gruppy”, Mat. zametki, 67:6 (2000), 852–858 | DOI | Zbl