Keywords: natural splines
@article{TIMM_2023_29_4_a17,
author = {S. I. Novikov},
title = {Optimal interpolation on an interval with the smallest mean-square norm of the $r$th derivative},
journal = {Trudy Instituta matematiki i mehaniki},
pages = {217--228},
year = {2023},
volume = {29},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TIMM_2023_29_4_a17/}
}
TY - JOUR AU - S. I. Novikov TI - Optimal interpolation on an interval with the smallest mean-square norm of the $r$th derivative JO - Trudy Instituta matematiki i mehaniki PY - 2023 SP - 217 EP - 228 VL - 29 IS - 4 UR - http://geodesic.mathdoc.fr/item/TIMM_2023_29_4_a17/ LA - ru ID - TIMM_2023_29_4_a17 ER -
S. I. Novikov. Optimal interpolation on an interval with the smallest mean-square norm of the $r$th derivative. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 29 (2023) no. 4, pp. 217-228. http://geodesic.mathdoc.fr/item/TIMM_2023_29_4_a17/
[1] Holladay J., “A smoothest curve approximation”, Math. Tables Aids Comput., 11 (1957), 233–243 | DOI | MR | Zbl
[2] Alberg Dzh., Nilson E., Uolsh Dzh., Teoriya splainov i ee prilozheniya, Mir, M., 1972, 316 pp.
[3] Malozemov V.N., Pevnyi A.B., Polinomialnye splainy, Izd-vo Leningr. un-ta, L., 1986, 120 pp. | MR
[4] Tikhomirov V.M., Boyanov B.D., “O nekotorykh vypuklykh zadachakh teorii priblizheniya”, Serdika. B'lgarsko matem. spisanie, 5 (1979), 83–96 | Zbl
[5] Subbotin Yu.N., “Funktsionalnaya interpolyatsiya v srednem s naimenshei $n$-i proizvodnoi”, Tr. MIAN, 88 (1967), 30–60 | Zbl
[6] Subbotin Yu.N., Novikov S.I., Shevaldin V.T., “Ekstremalnaya funktsionalnaya interpolyatsiya i splainy”, Tr. In-ta matematiki i mekhaniki UrO RAN, 24:3 (2018), 200–225 | DOI | MR
[7] Subbotin Yu.N., Shevaldin V.T., “Ekstremalnaya funktsionalnaya interpolyatsiya v prostranstve $L_{p}$ na proizvolnoi setke chislovoi osi”, Mat. sb., 213:4 (2022), 123–144 | DOI | MR | Zbl
[8] Novikov S.I., “Periodicheskaya interpolyatsiya s minimalnym znacheniem normy $m$-i proizvodnoi”, Sib. zhurn. vychisl. matematiki, 9:2 (2006), 165–172 | Zbl
[9] Schoenberg I.J., “On the best approximation of linear operators”, Indagationes Mathem, 26:2 (1964), 155–163 | DOI | MR
[10] Jerome J.W., Schumaker L.L., “A note on obtaining natural spline functions by the abstract approach of Atteia and Laurent”, SIAM J. Numer. Anal., 5 (1968), 657–663 | DOI | MR
[11] Prudnikov A.P., Brychkov Yu.A., Marichev O.I., Integraly i ryady. Elementarnye funktsii, Nauka, M., 1981, 800 pp. | MR
[12] Holmes R., Geometric functional analysis and its applications, Springer Verlag, N.Y. ect., 1975, 246 pp. | MR | Zbl
[13] Fikhtengolts G.M., Kurs differentsialnogo i integralnogo ischisleniya, v. 1, Nauka, M., 1970, 608 pp.
[14] Faddeev D.K., Faddeeva V.N., Vychislitelnye metody lineinoi algebry, Izd-vo “Lan”, SPb., 2009, 736 pp. | MR
[15] Parodi M., Lokalizatsiya kharakteristicheskikh chisel matrits i ee primeneniya, Iz-vo inostr. liter., M., 1960, 170 pp.
[16] Tarazaga P., “Eigenvalue estimates for symmetric matrices”, Linear Algebra and its Appl., 135:1 (1990), 171–179 | DOI | MR | Zbl