Optimal interpolation on an interval with the smallest mean-square norm of the $r$th derivative
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 29 (2023) no. 4, pp. 217-228 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

An exact solution is found to the problem of interpolation on a finite interval $[a,b]$ with the smallest $L_{2}$-norm of the $r$th-order derivative $(r\geq 2)$ by functions $f$: $[a,b]\to \mathbb{R}$ with absolutely continuous $(r-1)$th-order derivatives for finite collections of data from the unit ball of the space $l_{2}^{N}$. Interpolation is performed at nodes of an arbitrary grid $\Delta _{N}$: $a=x_{1}$. The smallest value of the $L_{2}$-norm on the class of interpolated data is expressed in terms of the largest eigenvalue of a certain square matrix and its determinant. The paper improves the classical results of spline theory related to the minimum norm property, which were originally obtained by J. Holladay and then developed by J. Ahlberg, E. Nilson, and J. Walsh, as well as by V. N. Malozemov and A. B. Pevnyi.
Mots-clés : interpolation, matrix eigenvalue.
Keywords: natural splines
@article{TIMM_2023_29_4_a17,
     author = {S. I. Novikov},
     title = {Optimal interpolation on an interval with the smallest mean-square norm of the $r$th derivative},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {217--228},
     year = {2023},
     volume = {29},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2023_29_4_a17/}
}
TY  - JOUR
AU  - S. I. Novikov
TI  - Optimal interpolation on an interval with the smallest mean-square norm of the $r$th derivative
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2023
SP  - 217
EP  - 228
VL  - 29
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/TIMM_2023_29_4_a17/
LA  - ru
ID  - TIMM_2023_29_4_a17
ER  - 
%0 Journal Article
%A S. I. Novikov
%T Optimal interpolation on an interval with the smallest mean-square norm of the $r$th derivative
%J Trudy Instituta matematiki i mehaniki
%D 2023
%P 217-228
%V 29
%N 4
%U http://geodesic.mathdoc.fr/item/TIMM_2023_29_4_a17/
%G ru
%F TIMM_2023_29_4_a17
S. I. Novikov. Optimal interpolation on an interval with the smallest mean-square norm of the $r$th derivative. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 29 (2023) no. 4, pp. 217-228. http://geodesic.mathdoc.fr/item/TIMM_2023_29_4_a17/

[1] Holladay J., “A smoothest curve approximation”, Math. Tables Aids Comput., 11 (1957), 233–243 | DOI | MR | Zbl

[2] Alberg Dzh., Nilson E., Uolsh Dzh., Teoriya splainov i ee prilozheniya, Mir, M., 1972, 316 pp.

[3] Malozemov V.N., Pevnyi A.B., Polinomialnye splainy, Izd-vo Leningr. un-ta, L., 1986, 120 pp. | MR

[4] Tikhomirov V.M., Boyanov B.D., “O nekotorykh vypuklykh zadachakh teorii priblizheniya”, Serdika. B'lgarsko matem. spisanie, 5 (1979), 83–96 | Zbl

[5] Subbotin Yu.N., “Funktsionalnaya interpolyatsiya v srednem s naimenshei $n$-i proizvodnoi”, Tr. MIAN, 88 (1967), 30–60 | Zbl

[6] Subbotin Yu.N., Novikov S.I., Shevaldin V.T., “Ekstremalnaya funktsionalnaya interpolyatsiya i splainy”, Tr. In-ta matematiki i mekhaniki UrO RAN, 24:3 (2018), 200–225 | DOI | MR

[7] Subbotin Yu.N., Shevaldin V.T., “Ekstremalnaya funktsionalnaya interpolyatsiya v prostranstve $L_{p}$ na proizvolnoi setke chislovoi osi”, Mat. sb., 213:4 (2022), 123–144 | DOI | MR | Zbl

[8] Novikov S.I., “Periodicheskaya interpolyatsiya s minimalnym znacheniem normy $m$-i proizvodnoi”, Sib. zhurn. vychisl. matematiki, 9:2 (2006), 165–172 | Zbl

[9] Schoenberg I.J., “On the best approximation of linear operators”, Indagationes Mathem, 26:2 (1964), 155–163 | DOI | MR

[10] Jerome J.W., Schumaker L.L., “A note on obtaining natural spline functions by the abstract approach of Atteia and Laurent”, SIAM J. Numer. Anal., 5 (1968), 657–663 | DOI | MR

[11] Prudnikov A.P., Brychkov Yu.A., Marichev O.I., Integraly i ryady. Elementarnye funktsii, Nauka, M., 1981, 800 pp. | MR

[12] Holmes R., Geometric functional analysis and its applications, Springer Verlag, N.Y. ect., 1975, 246 pp. | MR | Zbl

[13] Fikhtengolts G.M., Kurs differentsialnogo i integralnogo ischisleniya, v. 1, Nauka, M., 1970, 608 pp.

[14] Faddeev D.K., Faddeeva V.N., Vychislitelnye metody lineinoi algebry, Izd-vo “Lan”, SPb., 2009, 736 pp. | MR

[15] Parodi M., Lokalizatsiya kharakteristicheskikh chisel matrits i ee primeneniya, Iz-vo inostr. liter., M., 1960, 170 pp.

[16] Tarazaga P., “Eigenvalue estimates for symmetric matrices”, Linear Algebra and its Appl., 135:1 (1990), 171–179 | DOI | MR | Zbl