On Submodularity and K$\mathfrak F$-Subnormality in Finite Groups
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 29 (2023) no. 4, pp. 169-180
Voir la notice de l'article provenant de la source Math-Net.Ru
Let $\mathfrak F$ be a formation, and let $G$ be a finite group. A subgroup $H$ of $G$ is called \lb $\mathrm{K}\mathfrak F$‑subnormal (submodular) in $G$ if there is a subgroup chain $H=H_0\le H_1 \le \ldots \le H_{n-1}\le H_n=G$ such that, for every $i$ either $H_{i}$ is normal in $H_{i+1}$ or $H_{i+1}^\mathfrak{F} \le H_i$ ($H_i$ is a modular subgroup of $H_{i+1}$, respectively). We prove that, in a group, a primary subgroup is submodular if and only if it is $\mathrm{K}\mathfrak U_1$‑subnormal. Here $\mathfrak U_1$ is a formation of all supersolvable groups of square-free exponent. Moreover, for a solvable subgroup-closed formation $\mathfrak{F}$, every solvable $\mathrm{K}\mathfrak{F}$‑subnormal subgroup of a group $G$ is contained in the solvable radical of $G$. We also obtain a series of applications of these results to the investigation of groups factorized by $\mathrm{K}\mathfrak{F}$‑subnormal and submodular subgroups.
Keywords:
finite group, subnormal subgroup, submodular subgroup.
@article{TIMM_2023_29_4_a14,
author = {V. S. Monakhov and I. L. Sokhor},
title = {On {Submodularity} and {K}$\mathfrak F${-Subnormality} in {Finite} {Groups}},
journal = {Trudy Instituta matematiki i mehaniki},
pages = {169--180},
publisher = {mathdoc},
volume = {29},
number = {4},
year = {2023},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TIMM_2023_29_4_a14/}
}
TY - JOUR AU - V. S. Monakhov AU - I. L. Sokhor TI - On Submodularity and K$\mathfrak F$-Subnormality in Finite Groups JO - Trudy Instituta matematiki i mehaniki PY - 2023 SP - 169 EP - 180 VL - 29 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TIMM_2023_29_4_a14/ LA - ru ID - TIMM_2023_29_4_a14 ER -
V. S. Monakhov; I. L. Sokhor. On Submodularity and K$\mathfrak F$-Subnormality in Finite Groups. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 29 (2023) no. 4, pp. 169-180. http://geodesic.mathdoc.fr/item/TIMM_2023_29_4_a14/