On Submodularity and K$\mathfrak F$-Subnormality in Finite Groups
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 29 (2023) no. 4, pp. 169-180 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

Let $\mathfrak F$ be a formation, and let $G$ be a finite group. A subgroup $H$ of $G$ is called \lb $\mathrm{K}\mathfrak F$‐subnormal (submodular) in $G$ if there is a subgroup chain $H=H_0\le H_1 \le \ldots \le H_{n-1}\le H_n=G$ such that, for every $i$ either $H_{i}$ is normal in $H_{i+1}$ or $H_{i+1}^\mathfrak{F} \le H_i$ ($H_i$ is a modular subgroup of $H_{i+1}$, respectively). We prove that, in a group, a primary subgroup is submodular if and only if it is $\mathrm{K}\mathfrak U_1$‐subnormal. Here $\mathfrak U_1$ is a formation of all supersolvable groups of square-free exponent. Moreover, for a solvable subgroup-closed formation $\mathfrak{F}$, every solvable $\mathrm{K}\mathfrak{F}$‐subnormal subgroup of a group $G$ is contained in the solvable radical of $G$. We also obtain a series of applications of these results to the investigation of groups factorized by $\mathrm{K}\mathfrak{F}$‐subnormal and submodular subgroups.
Keywords: finite group, subnormal subgroup, submodular subgroup.
@article{TIMM_2023_29_4_a14,
     author = {V. S. Monakhov and I. L. Sokhor},
     title = {On {Submodularity} and {K}$\mathfrak F${-Subnormality} in {Finite} {Groups}},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {169--180},
     year = {2023},
     volume = {29},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2023_29_4_a14/}
}
TY  - JOUR
AU  - V. S. Monakhov
AU  - I. L. Sokhor
TI  - On Submodularity and K$\mathfrak F$-Subnormality in Finite Groups
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2023
SP  - 169
EP  - 180
VL  - 29
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/TIMM_2023_29_4_a14/
LA  - ru
ID  - TIMM_2023_29_4_a14
ER  - 
%0 Journal Article
%A V. S. Monakhov
%A I. L. Sokhor
%T On Submodularity and K$\mathfrak F$-Subnormality in Finite Groups
%J Trudy Instituta matematiki i mehaniki
%D 2023
%P 169-180
%V 29
%N 4
%U http://geodesic.mathdoc.fr/item/TIMM_2023_29_4_a14/
%G ru
%F TIMM_2023_29_4_a14
V. S. Monakhov; I. L. Sokhor. On Submodularity and K$\mathfrak F$-Subnormality in Finite Groups. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 29 (2023) no. 4, pp. 169-180. http://geodesic.mathdoc.fr/item/TIMM_2023_29_4_a14/

[1] Kegel O.H., “Untergruppenverbände endlicher Gruppen, die den Subnormalteilerverband echt enthalten”, Arch. Math., 30 (1978), 225–228 | DOI | MR | Zbl

[2] Hawkes T., “On formation subgroups of a finite soluble group”, J. Lond. Math. Soc., s1-44:1 (1969), 243–250 | DOI | MR | Zbl

[3] Shemetkov L.A., Formatsii konechnykh grupp, Nauka, M., 1978, 271 pp. | MR

[4] Doerk K., Hawkes T., Finite soluble groups, Walter de Gruyter, Berlin; NY, 1992, 891 pp. | MR

[5] Kamornikov S.F., Selkin M.V., Podgruppovye funktory i klassy konechnykh grupp, Belaruskaya navuka, Minsk, 2003, 254 pp.

[6] Ballester-Bolinches A., Ezquerro L.M., Classes of finite groups, Springer, Dordrecht, 2006, 381 pp. | MR | Zbl

[7] Schmidt R., Subgroup lattices of groups, De Gruyter, Berlin; NY, 1994, 572 pp. | MR | Zbl

[8] Zimmermann I., “Submodular subgroups in finite groups ”, Math. Z., 202 (1989), 545–557 | DOI | MR | Zbl

[9] Vasilev V.A., “Konechnye gruppy s submodulyarnymi silovskimi podgruppami”, Sib. mat. zhurn., 56:6 (2015), 1277–1288 | DOI | MR | Zbl

[10] Monakhov V.S., Sokhor I.L., “Finite groups with submodular primary subgroups”, Arch. Math., 121 (2023), 1–10 | DOI | MR

[11] Murashko V.I., “Klassy konechnykh grupp s obobschenno subnormalnymi tsiklicheskimi primarnymi podgruppami”, Sib. mat. zhurn., 55:6 (2014), 1353–1367 | MR | Zbl

[12] Vasilev A.F., Vasileva T.I., Tyutyanov V.N., “O konechnykh gruppakh sverkhrazreshimogo tipa”, Sib. mat. zhurn., 51:6 (2010), 1270–1281 | MR | Zbl

[13] Monakhov V.S., “Konechnye gruppy s abnormalnymi i $\mathfrak{U}$-subnormalnymi podgruppami”, Sib. mat. zhurn., 57:2 (2016), 447–462 | DOI | MR | Zbl

[14] Monakhov V.S., “O trekh formatsiyakh nad $\mathfrak{U}$”, Mat. zametki, 110:3 (2021), 358–367 | DOI | MR

[15] Vasilev A.F., Vasileva T.I., Tyutyanov V.N., “O $\mathrm K$-$\mathbb P$-subnormalnykh podgruppakh konechnykh grupp”, Mat. zametki, 95:4 (2014), 517–528 | DOI | MR | Zbl

[16] Monakhov V.S., Sokhor I.L., “Finite groups with formational subnormal primary subgroups of bounded exponent”, Sib. elektron. mat. izv., 20:2 (2023), 785–796 | DOI | MR

[17] Huppert B., Endliche Gruppen. I, Springer, Berlin; Heidelberg; NY, 1967, 793 pp. | MR | Zbl

[18] Monakhov V.S., “Konechnye faktorizuemye gruppy s $\mathbb P$-subnormalnymi $\mathrm v$-sverkhrazreshimymi i $\mathrm{sh}$-sverkhrazreshimymi somnozhitelyami”, Mat. zametki, 111:3 (2022), 403–410 | DOI | MR

[19] Vasilev V.A., “O vliyanii submodulyarnykh podgrupp na stroenie konechnykh grupp”, Vesnik VDU, 2016, no. 2(91), 17–21 | MR

[20] Vasilev A.F., “Novye svoistva konechnykh dinilpotentnykh grupp”, Vestsi NAN Belarusi. Ser. fiz.-mat. navuk, 2004, no. 2, 29–33