Periodic Groups with One Finite Nontrivial Sylow 2-Subgroup
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 29 (2023) no. 4, pp. 146-154 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

The following results are proved. Let $d$ be a natural number, and let $G$ be a group of finite even exponent such that each of its finite subgroups is contained in a subgroup isomorphic to the direct product of $m$ dihedral groups, where $m\le d$. Then $G$ is finite (and isomorphic to the direct product of at most $d$ dihedral groups). Next, suppose that $G$ is a periodic group and $p$ is an odd prime. If every finite subgroup of $G$ is contained in a subgroup isomorphic to the direct product $D_1\times D_2$, where $D_i$ is a dihedral group of order $2p^{r_i}$ with natural $r_i$, $i=1,2$, then $G=M_1\times M_2$, where $M_i=\langle H_i,t\rangle$, $t_i$ is an element of order $2$, $H_i$ is a locally cyclic $p$-group, and $h^{t_i}=h^{-1}$ for every $h\in H_i$, $i=1,2$. Now, suppose that $d$ is a natural number and $G$ is a solvable periodic group such that every of its finite subgroups is contained in a subgroup isomorphic to the direct product of at most $d$ dihedral groups. Then $G$ is locally finite and is an extension of an abelian normal subgroup by an elementary abelian $2$-subgroup of order at most $2^{2d}$.
Keywords: periodic group, exponent, Sylow 2-subgroup, dihedral group, direct product, saturating set.
@article{TIMM_2023_29_4_a12,
     author = {D. V. Lytkina and V. D. Mazurov},
     title = {Periodic {Groups} with {One} {Finite} {Nontrivial} {Sylow} {2-Subgroup}},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {146--154},
     year = {2023},
     volume = {29},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2023_29_4_a12/}
}
TY  - JOUR
AU  - D. V. Lytkina
AU  - V. D. Mazurov
TI  - Periodic Groups with One Finite Nontrivial Sylow 2-Subgroup
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2023
SP  - 146
EP  - 154
VL  - 29
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/TIMM_2023_29_4_a12/
LA  - ru
ID  - TIMM_2023_29_4_a12
ER  - 
%0 Journal Article
%A D. V. Lytkina
%A V. D. Mazurov
%T Periodic Groups with One Finite Nontrivial Sylow 2-Subgroup
%J Trudy Instituta matematiki i mehaniki
%D 2023
%P 146-154
%V 29
%N 4
%U http://geodesic.mathdoc.fr/item/TIMM_2023_29_4_a12/
%G ru
%F TIMM_2023_29_4_a12
D. V. Lytkina; V. D. Mazurov. Periodic Groups with One Finite Nontrivial Sylow 2-Subgroup. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 29 (2023) no. 4, pp. 146-154. http://geodesic.mathdoc.fr/item/TIMM_2023_29_4_a12/

[1] Ivanov S.V., “The free Burnside groups of sufficiently large exponents”, Internat. J. Algebra Comput., 4:1-2 (1994), 1–308 | DOI | MR | Zbl

[2] Lysenok I.G., “Beskonechnye bernsaidovy gruppy chetnogo perioda”, Izv. RAN. Ser. matematicheskaya, 60:3 (1996), 5–224 | MR

[3] Ivanov S.V., Olshanskii A.Yu., “On finite and locally finite subgroups of free Burnside groups of large even exponents”, J. Algebra, 195:1 (1997), 281–284 | DOI | MR

[4] Shlepkin A.K., Rubashkin A.G., “Ob odnom klasse periodicheskikh grupp”, Algebra i logika, 44:1 (2005), 114–125 | MR | Zbl

[5] Shlepkin A.K., “O nekotorykh periodicheskikh gruppakh, nasyschennykh konechnymi prostymi gruppami”, Mat. tr., 1:1 (1998), 129–138 | MR | Zbl

[6] Amberg B., Kazarin L., “Periodic groups saturated by dihedral subgroups”, Proc. Conf. Ischia group theory 2010, World Sci. Publ., 2012, 11–19 | DOI | MR | Zbl

[7] Belousov I.N., Kondratev A.S., Rozhkov A.V., “XII shkola-konferentsiya po teorii grupp, posvyaschennaya 65-letiyu so dnya rozhdeniya A. A. Makhneva”, informatsionnaya statya, Tr. In-ta matematiki i mekhaniki UrO RAN, 24:3 (2018), 286–295 | DOI

[8] Kukharev A.V., Shlepkin A.A., “Lokalno konechnye gruppy, nasyschennye pryamym proizvedeniem dvukh konechnykh grupp diedra”, Izv. Irkutskogo gos. un-ta. Ser. “Matematika”, 44 (2023), 71–81 | DOI | MR

[9] Shunkov V.P., “O periodicheskikh gruppakh s pochti regulyarnoi involyutsiei”, Algebra i logika, 11:4 (1972), 470–493

[10] Lytkina D.V., Tukhvatullina L.R., Filippov K.A., “O periodicheskikh gruppakh, nasyschennykh konechnym mnozhestvom konechnykh prostykh grupp”, Sib. mat. zhurn., 49:2 (2008), 394–399 | MR | Zbl

[11] Lytkina D.V., Mazurov V.D., “Fusion of 2-elements in periodic groups with finite Sylow 2-subgroups”, Siberian Electronic Math. Reports, 17 (2020), 1953–1958 | DOI | MR | Zbl

[12] Kholl M., Teoriya grupp, Inostrannaya literatura, M., 1962, 467 pp.