Examples of Nonpronormal Relatively Maximal Subgroups of Finite Simple Groups
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 29 (2023) no. 4, pp. 140-145

Voir la notice de l'article provenant de la source Math-Net.Ru

Using R. Wilson's recent results, we prove the existence of triples $(\mathfrak{X},G,H)$ such that $\mathfrak{X}$ is a complete (i.e., closed under taking subgroups, homomorphic images, and extensions) class of finite groups, $G$ is a finite simple group, and $H$ is its $\mathfrak{X}$-maximal subgroup nonpronormal in $G$. This disproves a conjecture stated earlier by the second author and W. Guo.
Keywords: complete class of groups, relatively maximal subgroup, pronormal subgroup, finite simple group.
@article{TIMM_2023_29_4_a11,
     author = {B. Li and D. O. Revin},
     title = {Examples of {Nonpronormal} {Relatively} {Maximal} {Subgroups} of {Finite} {Simple} {Groups}},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {140--145},
     publisher = {mathdoc},
     volume = {29},
     number = {4},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2023_29_4_a11/}
}
TY  - JOUR
AU  - B. Li
AU  - D. O. Revin
TI  - Examples of Nonpronormal Relatively Maximal Subgroups of Finite Simple Groups
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2023
SP  - 140
EP  - 145
VL  - 29
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TIMM_2023_29_4_a11/
LA  - ru
ID  - TIMM_2023_29_4_a11
ER  - 
%0 Journal Article
%A B. Li
%A D. O. Revin
%T Examples of Nonpronormal Relatively Maximal Subgroups of Finite Simple Groups
%J Trudy Instituta matematiki i mehaniki
%D 2023
%P 140-145
%V 29
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TIMM_2023_29_4_a11/
%G ru
%F TIMM_2023_29_4_a11
B. Li; D. O. Revin. Examples of Nonpronormal Relatively Maximal Subgroups of Finite Simple Groups. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 29 (2023) no. 4, pp. 140-145. http://geodesic.mathdoc.fr/item/TIMM_2023_29_4_a11/