@article{TIMM_2023_29_4_a11,
author = {B. Li and D. O. Revin},
title = {Examples of {Nonpronormal} {Relatively} {Maximal} {Subgroups} of {Finite} {Simple} {Groups}},
journal = {Trudy Instituta matematiki i mehaniki},
pages = {140--145},
year = {2023},
volume = {29},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TIMM_2023_29_4_a11/}
}
TY - JOUR AU - B. Li AU - D. O. Revin TI - Examples of Nonpronormal Relatively Maximal Subgroups of Finite Simple Groups JO - Trudy Instituta matematiki i mehaniki PY - 2023 SP - 140 EP - 145 VL - 29 IS - 4 UR - http://geodesic.mathdoc.fr/item/TIMM_2023_29_4_a11/ LA - ru ID - TIMM_2023_29_4_a11 ER -
B. Li; D. O. Revin. Examples of Nonpronormal Relatively Maximal Subgroups of Finite Simple Groups. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 29 (2023) no. 4, pp. 140-145. http://geodesic.mathdoc.fr/item/TIMM_2023_29_4_a11/
[1] Hall P., Phillip Hall's lecture notes on group theory — Part 6, University of Cambridge, Cambridge, 1951–1967 URL: http://omeka.wustl.edu/omeka/items/show/10788
[2] de Giovanni F., Trombetti M., “Pronormality in group theory”, Adv. Group Theory Appl., 9 (2020), 123–149 | DOI | MR | Zbl
[3] Kondrat'ev A.S., Maslova N.V., Revin D.O., “On the pronormality of subgroups of odd index in finite simple groups”, Groups St Andrews 2017 in Birmingham, London Math. Soc. Lecture Note Ser., 455, eds. C.M. Campbell, M.R. Quick, C.W. Parker, E.F. Robertson, C. M. Roney-Dougal, Cambridge Univ. Press, Cambridge, 2019, 406–418 | DOI | MR | Zbl
[4] Guo W., Revin D.O., “Pronormality and submaximal $\mathfrak{X}$-subgroups in finite groups”, Comm. Math. Stat., 6:3 (2018), 289–317 | DOI | MR | Zbl
[5] Romalis G.M., Sesekin N.F., “O metagamiltonovykh gruppakh. I–III”, Mat. zap. UrGU, 5, tetr. 2 (1966), 45–49 ; 6, тетр. 5, 52–58; 7, тетр. 3 (1969/70), 195–199 | MR | MR
[6] De Falco M., de Giovanni F., Musella C., “Metahamiltonian groups and related topics”, Int. J. Group Theory, 2:1 (2013), 117–129 | MR | Zbl
[7] Brescia M., Ferrara M., Trombetti M., “The structure of metahamiltonian groups”, Jpn. J. Math., 18:1 (2023), 1–65 | DOI | MR | Zbl
[8] Makhnev A.A., “O konechnykh metagamiltonovykh gruppakh”, Mat. zap. UrGU, 10, tetr. 1 (1976), 60–75 | Zbl
[9] Brescia M., Ferrara M., Trombetti M., “Groups whose subgroups are either abelian or pronormal ”, Kyoto J. Math., 63:3 (2023), 471–500 | DOI | MR
[10] Brescia M., Trombetti M., “Locally finite simple groups whose non-Abelian subgroups are pronormal”, Comm. Algebra, 51:8 (2023), 3346–3353 | DOI | MR | Zbl
[11] Ferrara M., Trombetti M., “Groups with many pronormal subgroups”, Bull. Austral. Math. Soc., 105:1 (2022), 75–86 | DOI | MR | Zbl
[12] Ferrara M., Trombetti M., “Locally finite simple groups whose nonnilpotent subgroups are pronormal”, publ. online, Bull. Austral. Math. Soc., 2023, 1–10 | DOI
[13] Wielandt H., “Zusammengesetzte Gruppen endlicher Ordnung”, Lecture notes Math. Inst. Univ. Tübingen (1963/64), Helmut Wielandt. Mathematische Werke/Mathematical Works, v. 1, Group Theory, de Gruyter, Berlin, 1994, 607–655 | MR
[14] Go V., Revin D.O., “O maksimalnykh i submaksimalnykh $\mathfrak{X}$-podgruppakh”, Algebra i logika, 57:1 (2018), 14–42 | DOI | MR | Zbl
[15] Guo W., Revin D.O., “Classification and properties of the $\pi$-submaximal subgroups in minimal nonsolvable groups”, Bull. Math. Sci., 8:2 (2018), 325–351 | DOI | MR | Zbl
[16] Revin D.O., “Submaksimalnye razreshimye podgruppy nechetnogo indeksa v znakoperemennykh gruppakh”, Sib. mat. zhurn., 62:2 (2021), 387–401 | DOI | Zbl
[17] Vdovin E.P., Revin D.O., “Pronormalnost khollovykh podgrupp v konechnykh prostykh gruppakh”, Sib. mat. zhurn., 53:3 (2012), 527–542 | DOI | MR | Zbl
[18] Aschbacher M., “The subgroup structure of finite groups”, Finite simple groups: thirty years of the Atlas and beyond, Contemp. Math. AMS, 694, 2017, 111–121 | DOI | MR | Zbl
[19] Wilson R.A., “A negative answer to a question of Aschbacher”, Albanian J. Math., 12:1 (2018), 24–31 | DOI | MR | Zbl
[20] Conway J.H., et al., Atlas of finite groups, Clarendon Press, Oxford, 1985, 252 pp. | Zbl