Nikol'skii's inequality of different metrics for trigonometric polynomials in a space with mixed asymmetric norm
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 29 (2023) no. 4, pp. 11-26 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

A Lebesgue space of $2\pi$-periodic functions of $m$ variables with a mixed norm is considered. Based on this Lebesgue space, a space with a mixed asymmetric norm is defined. The main aim of the paper is to prove Nikol'skii's inequality of different metrics for multiple trigonometric polynomials in spaces with mixed asymmetric norms. The paper consists of an introduction and three sections. In the first section, several auxiliary statements about the asymmetric norm of a multiple trigonometric polynomial are proved. In the second section, Nikol'skii's inequality of different metrics is proved for multiple trigonometric polynomials in spaces with mixed asymmetric norms. In the third section, the accuracy of Nikol'skii's inequality for multiple trigonometric polynomials is established. An extremal polynomial is constructed.
Keywords: space with asymmetric norm, Nikol'skii's inequality of different metrics, trigonometric polynomial.
@article{TIMM_2023_29_4_a1,
     author = {G. A. Akishev},
     title = {Nikol'skii's inequality of different metrics for trigonometric polynomials in a space with mixed asymmetric norm},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {11--26},
     year = {2023},
     volume = {29},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2023_29_4_a1/}
}
TY  - JOUR
AU  - G. A. Akishev
TI  - Nikol'skii's inequality of different metrics for trigonometric polynomials in a space with mixed asymmetric norm
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2023
SP  - 11
EP  - 26
VL  - 29
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/TIMM_2023_29_4_a1/
LA  - ru
ID  - TIMM_2023_29_4_a1
ER  - 
%0 Journal Article
%A G. A. Akishev
%T Nikol'skii's inequality of different metrics for trigonometric polynomials in a space with mixed asymmetric norm
%J Trudy Instituta matematiki i mehaniki
%D 2023
%P 11-26
%V 29
%N 4
%U http://geodesic.mathdoc.fr/item/TIMM_2023_29_4_a1/
%G ru
%F TIMM_2023_29_4_a1
G. A. Akishev. Nikol'skii's inequality of different metrics for trigonometric polynomials in a space with mixed asymmetric norm. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 29 (2023) no. 4, pp. 11-26. http://geodesic.mathdoc.fr/item/TIMM_2023_29_4_a1/

[1] Besov O.V., Ilin V.P., Nikolskii S.M., Integralnye predstavleniya funktsii i teoremy vlozheniya, Nauka, M., 1975, 480 pp. | MR

[2] Nikolskii S.M., Priblizhenie funktsii mnogikh peremennykh i teoremy vlozheniya, Nauka, M., 1977, 456 pp. | MR

[3] Krein M.G., Nudelman A.A., Problemy momentov Markova i ekstremalnye zadachi, Nauka, M., 1973, 552 pp. | MR

[4] Stefan Cobzaş, Functional analysis in asymmetric normed spaces, Springer, Basel et al., 2013, 230 pp.

[5] Dolzhenko E.P., Sevastyanov E.A., “Approksimatsiya so znakochuvstvitelnym vesom”, Izv. RAN. Ser. matematicheskaya, 62:6 (1998), 59–102 ; 63:3, 77–118 | DOI | MR | Zbl

[6] Ramazanov A.-R.K., “O pryamykh i obratnykh teoremakh approksimatsii v metrike znakochuvstvitelnogo vesa”, Anal. Math., 21:3 (1995), 191–212 | DOI | MR | Zbl

[7] Borodin P.A., “Teorema Banakha — Mazura dlya prostranstv s nesimmetrichnoi normoi i ee prilozheniya v vypuklom analize”, Mat. zametki, 69:3 (2001), 329–337 | DOI | MR | Zbl

[8] Alimov A.R., “Universality theorems for asymmetric spaces”, Infinite Dimensional Analysis, Quantum Probability and Related Topics, 26:2 (2023), 2250017, 11 pp. | DOI | MR

[9] Tsarkov I.G., “Ravnomernaya vypuklost v nesimmetrichnykh prostranstvakh”, Mat. zametki, 110:5 (2021), 773–785 | DOI | MR | Zbl

[10] Kozko A.I., “Analogi neravenstv Dzheksona — Nikolskogo dlya trigonometricheskikh polinomov v prostranstvakh s nesimmetrichnoi normoi”, Mat. zametki, 61:5 (1997), 687–699 | DOI | MR | Zbl

[11] Kozko A.I., “Mnogomernye neravenstva raznykh metrik v prostranstvakh s nesimmetrichnoi normoi”, Mat. sb., 189:9 (1998), 85–106 | DOI | MR | Zbl

[12] Nikolskii S.M., “Neravenstva dlya tselykh funktsii konechnoi stepeni i ikh primenenie v teorii differentsiruemykh funktsii mnogikh peremennykh”, Tr. MIAN SSSR, 38 (1951), 244–278 | Zbl

[13] Jackson D., “Certain problems of closest approximation”, Bull. Amer. Math. Soc., 39:12 (1933), 889–906 | DOI | MR | Zbl

[14] Bari N.K., “Obobschenie neravenstv S. N. Bernshteina i A. A. Markova”, Izv. AN SSSR. Ser. matematicheskaya, 18:2 (1954), 159–176 | Zbl

[15] Potapov M.K., “Nekotorye neravenstva dlya polinomov i ikh proizvodnykh”, Vestn. MGU. Ser. matematika i mekhanika, 1960, no. 2, 10–20 | Zbl

[16] Khalilova B.A., “O nekotorykh otsenkakh dlya polinomov”, Izv. AN Azerb. SSR. Cer. fiziko-tekhnicheskikh nauk, 1974, no. 2, 46–54 | MR

[17] Ivanov V.I., “Nekotorye neravenstva dlya trigonometricheskikh polinomov i ikh proizvodnykh v raznykh metrikakh”, Mat. zametki, 18:4 (1975), 489–498 | MR | Zbl

[18] Burenkov V.I., “Teoremy vlozheniya i prodolzheniya dlya differentsiruemykh funktsii mnogikh peremennykh, zadannykh vo vsem prostranstve”, Itogi nauki. Ser. Matematika. Mat. analiz, VINITI, M., 1966, 71–155

[19] Gorbachev D.V., “Tochnye neravenstva Bernshteina — Nikolskogo dlya polinomov i tselykh funktsii eksponentsialnogo tipa”, Chebyshevskii sb., 22:5 (2022), 58–110 | DOI

[20] Nessel R. J., Wilmes G., “Nikol'skii–type inequalities for trigonometric polynomials and entire functions of exponential type”, J. Austral. Math. Soc.(Series A), 25 (1978), 7–18 | DOI | MR | Zbl

[21] Smailov E.S., “O vliyanii geometricheskikh svoistv spektra mnogochlena na neravenstva raznykh metrik S. M. Nikolskogo”, Sib. mat. zhurn., 39:5 (1998), 1158–1163

[22] Ibragimov I.I., “Ekstremalnye zadachi v klasse trigonometricheskikh polinomov”, Dokl. AN SSSR, 121:3 (1958), 15–417

[23] Arestov V.V., “O neravenstve raznykh metrik dlya trigonometricheskikh polinomov”, Mat. zametki, 27:4 (1980), 539–547 | MR | Zbl

[24] Chernykh N.I., “O nekotorykh ekstremalnykh zadachakh dlya polinomov”, Tr. MIAN SSSR, 78 (1965), 48–89

[25] Arestov V.V., Glazyrina P.Yu., “Sharp integral inequalities for fractional derivatives of trigonometric polynomials”, J. Approx. Theory, 164:11 (2012), 1501–1512 | DOI | MR | Zbl

[26] Arestov V., Babenko A., Deikalova M., Horv$\acute{a}$th $\acute{A}$., “Nikol'skii inequality between the uniform norm and integral norm with Bessel weight for entire functions of exponential type on the half-Line”, Anal. Math., 44:1 (2018), 21–42 | DOI | MR | Zbl

[27] Arestov V.V., Deikalova M.V., “Neravenstvo Nikolskogo dlya algebraicheskikh mnogochlenov na mnogomernoi evklidovoi sfere”, Tr. In-ta matematiki i mekhaniki UrO RAN, 19:2 (2013), 34–47 | MR

[28] Arestov V.V., Deikalova M.V., “Ob odnom obobschennom sdvige i sootvetstvuyuschem neravenstve raznykh metrik”, Tr. In-ta matematiki i mekhaniki UrO RAN, 28:4 (2022), 40–53 | DOI

[29] Gorbachev D.V., Martyanov I.A., “O vzaimosvyazi konstant Nikolskogo dlya trigonometricheskikh polinomov i tselykh funktsii eksponentsialnogo tipa”, Chebyshevskii sbornik, 19:2 (2018), 80–89 | DOI | MR | Zbl

[30] Martyanov I.A., “Konstanta Nikolskogo dlya trigonometricheskikh polinomov s periodicheskim vesom Gegenbauera”, Chebyshevskii sb., 21:1 (2020), 247–258 | DOI | MR

[31] Ganzburg M.I., Tikhonov S.Y., “On sharp constants in Bernstein–Nikolskii inequalities”, Constr. Approx., 45 (2017), 449–466 | DOI | MR | Zbl

[32] Uninskii A.P., “Neravenstva v smeshannoi norme dlya trigonometricheskikh polinomov i tselykh funktsii konechnoi stepeni”, Teoremy vlozheniya i ikh prilozheniya, tr. simpoziuma po teoremam vlozheniya (Baku, 1966), Nauka, M, 1970, 212–218 | MR

[33] Sabziev N.M., “Ob odnoi ekstremalnoi zadache v klasse trigonometricheskikh polinomov”, Issledovanie po sovremennym problemam konstruktivnoi teorii funktsii, Izd-vo AN Azerb. SSR, 1965, 265–272 | MR

[34] Potapov M.K., “Teoremy vlozheniya v smeshannoi metrike”, Tr. MIAN SSSR, 156 (1980), 143–156 | Zbl