@article{TIMM_2023_29_3_a9,
author = {R. Yu. Simanchev and I. V. Urazova},
title = {Comparison and {Polyhedral} {Properties} of {Valid} {Inequalities} for a {Polytope} of {Schedules} for {Servicing} {Identical} {Requests}},
journal = {Trudy Instituta matematiki i mehaniki},
pages = {156--167},
year = {2023},
volume = {29},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TIMM_2023_29_3_a9/}
}
TY - JOUR AU - R. Yu. Simanchev AU - I. V. Urazova TI - Comparison and Polyhedral Properties of Valid Inequalities for a Polytope of Schedules for Servicing Identical Requests JO - Trudy Instituta matematiki i mehaniki PY - 2023 SP - 156 EP - 167 VL - 29 IS - 3 UR - http://geodesic.mathdoc.fr/item/TIMM_2023_29_3_a9/ LA - ru ID - TIMM_2023_29_3_a9 ER -
%0 Journal Article %A R. Yu. Simanchev %A I. V. Urazova %T Comparison and Polyhedral Properties of Valid Inequalities for a Polytope of Schedules for Servicing Identical Requests %J Trudy Instituta matematiki i mehaniki %D 2023 %P 156-167 %V 29 %N 3 %U http://geodesic.mathdoc.fr/item/TIMM_2023_29_3_a9/ %G ru %F TIMM_2023_29_3_a9
R. Yu. Simanchev; I. V. Urazova. Comparison and Polyhedral Properties of Valid Inequalities for a Polytope of Schedules for Servicing Identical Requests. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 29 (2023) no. 3, pp. 156-167. http://geodesic.mathdoc.fr/item/TIMM_2023_29_3_a9/
[1] Simanchev R.Yu., Soloveva P.V., Urazova I.V., “Affinnaya obolochka mnogogrannika raspisanii obsluzhivaniya identichnykh trebovanii parallelnymi priborami”, Diskret. analiz i iscledovanie operatsii, 28:1 (2021), 48–67 | DOI | MR | Zbl
[2] Simanchev R.Yu., Urazova I.V., “The polytope of schedules of processing of identical requirements: the properties of the relaxation polyhedron”, 20th Internat. Conf. “MOTOR 2021”, Communications in Computer and Information Science, 1476, eds. A. Strekalovsky et. al, 2021, 257–270 | DOI | MR
[3] Simanchev R. Yu., Urazova I. V., “Tselochislennaya model zadachi minimizatsii obschego vremeni obsluzhivaniya parallelnymi priborami edinichnykh trebovanii s predshestvovaniyami”, Avtomatika i telemekhanika, 2010, no. 10, 100–106 | MR | Zbl
[4] Grotschel M., Wakabayashi Y., “A cutting plane algorithm for a clustering problem”, Math. Prog. (Ser. B), 1989, no. 45, 59–96 | DOI | MR | Zbl
[5] Khachai D., Sadykov R., Battaia O., Khachay M., “Precedence constrained generalized traveling salesman problem: Polyhedral study, formulations, and branch-and-cut algorithm”, European J. Oper. Res., 309:2 (2023), 488–505 | DOI | MR
[6] Balas E., “On the facial structure of sheduling polyhedra”, Mathematical Programming Essays in Honor of George B. Dantzig, Part I, Math. Prog. Study, 24, ed. R. W. Cottle, 1985, 179–218 | DOI | MR | Zbl
[7] Mokotoff E., “An exact algorithm for the identical parallel machine scheduling problem”, Europ. J. Oper. Res., 152:3 (2004), 758–769 | DOI | MR | Zbl
[8] Queyranne M., Wang Y., “Single-machine scheduling polyhedra with precedence constraints”, Mathematics Oper. Res., 1991, no. 16, 1–20 | DOI | MR | Zbl
[9] Nemhauser G.L., Savelsbergh M.W., “A cutting plane algorithm of single machine scheduling problem with release times”, Combinatorial Optimization: New Frontiers in the Theory and Practice, NATO ASI Series F: Computer and System Science, 82, eds. M. Akgül et. al, Springer, Berlin, 1992, 63–84 | DOI | MR
[10] Simanchev R.Yu., Urazova I.V., “Mnogogrannik raspisanii obsluzhivaniya identichnykh trebovanii parallelnymi priborami”, Diskret. analiz i issledovanie operatsii, 18:11 (2011), 85–97 | MR | Zbl
[11] Garey M.R., Johnson D.S., Computers and Intractability: A guide to the theory of $NP$-completeness, W.H. Freeman and co., NY, 1979, 340 pp. | MR | Zbl
[12] Tanaev V.S., Gordon V.S., Shafranskii V.V., Teoriya raspisanii. Odnostadiinye sistemy, Nauka, M., 1987, 384 pp.
[13] Kolokolov A.A., “Regulyarnye razbieniya i otsecheniya v tselochislennom programmirovanii”, Sibirskii zhurn. issledovaniya operatsii, 1:2 (1994), 18–39, Novosibirsk | MR | Zbl
[14] Christofides N., Graph theory. An algorithmic approach, Acad. Press, NY, 1975, 400 pp. | MR | Zbl
[15] Brucker P., Knust S., Complexity results for scheduling problems [e-resource]. URL: http://www.mathematik.uni-osnabrueck.de/research/OR/class | MR
[16] Simanchev R.Yu., Urazova I.V., “Klass $t$-dolnykh neravenstv dlya mnogogrannika raspisanii obsluzhivaniya trebovanii parallelnymi priborami”, Proc. of the Workshop on Data, Modeling and Security (DMS-2017), eds. Sergey V. Belim, Nadezda F. Bogachenko, Omsk, 2017, 5 pp. URL: http://ceur-ws.org/Vol-1965/paper8.pdf | Zbl