Power degrees in dynamic multi-agent systems
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 29 (2023) no. 3, pp. 128-137 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

Dynamic multi-agent systems connected in network are considered. To define the power of each agent the analogue of characteristic function is introduced. The values of this characteristic function for each coalition (subset of agents) are calculated as joint payoff of players from this coalition plus payoffs (multiplied on some discount factor) of players which do not belong to the coalition $S$ but have connections with players from $S$. We suppose that the dynamic of the system is prescribed (this maybe cooperation, Nash equilibrium or any other behaviour). Thus, the characteristic function is evaluated along the prescribed trajectory of agents. And it measures the worth of coalitions under the motion along this trajectory instead of under minimax confrontation or the Nash non-cooperative stance. As solution we consider the proportional solution and introduce Power degrees of an agent based on proportional solution. It is shown that the Power degree (PD) belongs to the Core. PD rank agents according to their importance.
Keywords: multi-agent system and proportional solution and power degree.
@article{TIMM_2023_29_3_a7,
     author = {L. A. Petrosyan and D. Yeung and Ya. B. Pankratova},
     title = {Power degrees in dynamic multi-agent systems},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {128--137},
     year = {2023},
     volume = {29},
     number = {3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2023_29_3_a7/}
}
TY  - JOUR
AU  - L. A. Petrosyan
AU  - D. Yeung
AU  - Ya. B. Pankratova
TI  - Power degrees in dynamic multi-agent systems
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2023
SP  - 128
EP  - 137
VL  - 29
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TIMM_2023_29_3_a7/
LA  - en
ID  - TIMM_2023_29_3_a7
ER  - 
%0 Journal Article
%A L. A. Petrosyan
%A D. Yeung
%A Ya. B. Pankratova
%T Power degrees in dynamic multi-agent systems
%J Trudy Instituta matematiki i mehaniki
%D 2023
%P 128-137
%V 29
%N 3
%U http://geodesic.mathdoc.fr/item/TIMM_2023_29_3_a7/
%G en
%F TIMM_2023_29_3_a7
L. A. Petrosyan; D. Yeung; Ya. B. Pankratova. Power degrees in dynamic multi-agent systems. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 29 (2023) no. 3, pp. 128-137. http://geodesic.mathdoc.fr/item/TIMM_2023_29_3_a7/

[17] Wie B.W., “A differential game approach to the dynamic mixed behavior traffic network equilibrium problem”, Eur. J. Oper. Res., 83:1 (1995), 117–136 | DOI | Zbl

[18] Pai H.M., “A differential game formulation of a controlled network”, Queueing SY, 64:4 (2010), 325–358 | DOI | MR | Zbl

[19] Meza M.A.G., Lopez-Barrientos J.D., “A differential game of a duopoly with network externalities”, Recent Advances in Game Theory and Applications, Ser. Static Dynamic Game Theory: Foundations Applications, eds. L. Petrosyan, V. Mazalov, Birkhäuser, Cham, 2016, 49–66 | DOI | MR | Zbl

[20] Bulgakova M., Petrosyan L., “About one multistage non-antagonistic network game”, Vestnik S.-Petersburg Univ., Ser. 10. Prikl. Mat. Inform. Prots. Upr., 5:4 (2019), 603–615 ((in Russian)) | DOI | MR

[21] Wie B.W., “A differential game model of Nash equilibrium on a congested traffic network”, Networks, 23 (1993), 557–565 | DOI | MR | Zbl

[22] Petrosyan L.A., “Cooperative differential games on networks”, Trudy Inst. Mat. Mekh. UrO RAN, 16:5 (2010), 143–150 ((in Russian))

[23] Petrosyan L.A., Yeung D.W.K., “Shapley value for differential network games: Theory and application”, Journal of Dynamics and Games, 8:2 (2020), 151–166 | DOI | MR

[24] Tur A., Petrosyan L., “The core of cooperative differential games on networks”, Mathematical Optimization Theory and Operations Research (MOTOR 2022), Lecture Notes Comp. Sci., 13367, eds. P. Pardalos, M. Khachay, V. Mazalov, Springer, Cham, 2022 | DOI | MR | Zbl

[25] Petrosyan L., Pankratova Y., “Owen value for dynamic games on networks”, Contributions to Game Theory and Management, 15, eds. Leon A. , Nickolay A. Zenkevich, 2022, 218–225 | DOI | MR

[26] Yeung D.W.K., “Time consistent Shapley value imputation for cost-saving joint ventures”, Mat. Teor. Igr Pril., 2:3 (2010), 137–149 | Zbl

[27] Petrosyan L., Yeung D.W.K., Pankratova Y., “Cooperative differential games with partner sets on networks”, Trudy Inst. Mat. Mekh. UrO RAN, 27:3 (2021), 286–295 | DOI | MR

[28] Petrosyan L., Yeung D.W.K., Pankratova Y., “Dynamic cooperative games on networks”, Mathematical Optimization Theory and Operations Research: Recent Trends, 20th Internat. Conf. MOTOR 2021, eds. A. Strekalovsky, Y. Kochetov, T. Gruzdeva and A. Orlov, Springer Nature, Berlin, 2021, 403–416 | DOI | MR

[29] Cao H., Ertin E., Arora A., “MiniMax equilibrium of networked differential games”, ACM TAAS, 3:4 (1963) | DOI

[30] Mazalov V., Chirkova J., Networking games. Network forming games and games on networks, 1st edn., Elsevier Inc., Amsterdam, 2019 | DOI | Zbl

[31] Shapley L.S., “A value for N-person games”, Contributions to the theory of games, eds. H. Kuhn, A. Tucker, Princeton University Press, Princeton, 1953, 307–317 | MR