On Operator Inclusions in Spaces with Vector-Valued Metrics
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 29 (2023) no. 3, pp. 106-127

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider an inclusion $\widetilde y\in F(x)$ with a multivalued mapping acting in spaces with vector-valued metrics whose values are elements of cones in Banach spaces and can be infinite. A statement about the existence of a solution $x \in X$ and an estimate of its deviation from a given element $x_0 \in X$ in a vector-valued metric are obtained. This result extends the known theorems on similar operator equations and inclusions in metric spaces and in the spaces with $n$-dimensional metric to a more general case and, applied to particular classes of functional equations and inclusions, allows to get less restrictive, compared to known, solvability conditions as well as more precise estimates of solutions. We apply this result to the integral inclusion $$ \widetilde{y}(t)\in f\Bigl(t,\int_a^b \varkappa(t,s) x(s)\,ds, x(t) \Bigr), \ \ t \in [a,b], $$ where the function $\widetilde y$ is measurable, the mapping $f$ satisfies the Carathéodory conditions, and the solution $x$ is required to be only measurable (the integrability of $x$ is not assumed).
Keywords: space with vector-valued metric, multivalued mapping, vector metric regularity, Lipschitz property with operator coefficient, operator inclusion, integral inclusion.
@article{TIMM_2023_29_3_a6,
     author = {E. A. Panasenko},
     title = {On {Operator} {Inclusions} in {Spaces} with {Vector-Valued} {Metrics}},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {106--127},
     publisher = {mathdoc},
     volume = {29},
     number = {3},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2023_29_3_a6/}
}
TY  - JOUR
AU  - E. A. Panasenko
TI  - On Operator Inclusions in Spaces with Vector-Valued Metrics
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2023
SP  - 106
EP  - 127
VL  - 29
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TIMM_2023_29_3_a6/
LA  - ru
ID  - TIMM_2023_29_3_a6
ER  - 
%0 Journal Article
%A E. A. Panasenko
%T On Operator Inclusions in Spaces with Vector-Valued Metrics
%J Trudy Instituta matematiki i mehaniki
%D 2023
%P 106-127
%V 29
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TIMM_2023_29_3_a6/
%G ru
%F TIMM_2023_29_3_a6
E. A. Panasenko. On Operator Inclusions in Spaces with Vector-Valued Metrics. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 29 (2023) no. 3, pp. 106-127. http://geodesic.mathdoc.fr/item/TIMM_2023_29_3_a6/