On Operator Inclusions in Spaces with Vector-Valued Metrics
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 29 (2023) no. 3, pp. 106-127 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

We consider an inclusion $\widetilde y\in F(x)$ with a multivalued mapping acting in spaces with vector-valued metrics whose values are elements of cones in Banach spaces and can be infinite. A statement about the existence of a solution $x \in X$ and an estimate of its deviation from a given element $x_0 \in X$ in a vector-valued metric are obtained. This result extends the known theorems on similar operator equations and inclusions in metric spaces and in the spaces with $n$-dimensional metric to a more general case and, applied to particular classes of functional equations and inclusions, allows to get less restrictive, compared to known, solvability conditions as well as more precise estimates of solutions. We apply this result to the integral inclusion $$ \widetilde{y}(t)\in f\Bigl(t,\int_a^b \varkappa(t,s) x(s)\,ds, x(t) \Bigr), \ \ t \in [a,b], $$ where the function $\widetilde y$ is measurable, the mapping $f$ satisfies the Carathéodory conditions, and the solution $x$ is required to be only measurable (the integrability of $x$ is not assumed).
Keywords: space with vector-valued metric, multivalued mapping, vector metric regularity, Lipschitz property with operator coefficient, operator inclusion, integral inclusion.
@article{TIMM_2023_29_3_a6,
     author = {E. A. Panasenko},
     title = {On {Operator} {Inclusions} in {Spaces} with {Vector-Valued} {Metrics}},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {106--127},
     year = {2023},
     volume = {29},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2023_29_3_a6/}
}
TY  - JOUR
AU  - E. A. Panasenko
TI  - On Operator Inclusions in Spaces with Vector-Valued Metrics
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2023
SP  - 106
EP  - 127
VL  - 29
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TIMM_2023_29_3_a6/
LA  - ru
ID  - TIMM_2023_29_3_a6
ER  - 
%0 Journal Article
%A E. A. Panasenko
%T On Operator Inclusions in Spaces with Vector-Valued Metrics
%J Trudy Instituta matematiki i mehaniki
%D 2023
%P 106-127
%V 29
%N 3
%U http://geodesic.mathdoc.fr/item/TIMM_2023_29_3_a6/
%G ru
%F TIMM_2023_29_3_a6
E. A. Panasenko. On Operator Inclusions in Spaces with Vector-Valued Metrics. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 29 (2023) no. 3, pp. 106-127. http://geodesic.mathdoc.fr/item/TIMM_2023_29_3_a6/

[1] Arutyunov A.V., “Nakryvayuschie otobrazheniya v metricheskikh prostranstvakh i nepodvizhnye tochki”, Dokl. AN, 416:2 (2007), 151–155 | Zbl

[2] Arutyunov A., Avakov E., Gel'man B., Dmitruk A., Obukhovskii V., “Locally covering maps in metric spaces and coincidence points”, J. Fixed Point Theory Appl., 5 (2009), 105–127 | DOI | MR | Zbl

[3] Arutyunov A.V., Zhukovskii E.S., Zhukovskii S.E., “Tochki sovpadeniya i obobschennye tochki sovpadeniya dvukh mnogoznachnykh otobrazhenii”, Tr. MIAN, 308 (2020), 42–49 | DOI | Zbl

[4] Avakov E.R., Arutyunov A.V., Zhukovskii E.S., “Nakryvayuschie otobrazheniya i ikh prilozheniya k differentsialnym uravneniyam, ne razreshennym otnositelno proizvodnoi”, Differents. uravneniya, 45:5 (2009), 613–634 | MR | Zbl

[5] Arutyunov A.V., Zhukovskii E.S., Zhukovskii S.E., “O korrektnosti differentsialnykh uravnenii, ne razreshennykh otnositelno proizvodnoi”, Differents. uravneniya, 47:11 (2011), 1523–1537 | MR | Zbl

[6] Zhukovskii E.S., “O tochkakh sovpadeniya vektornykh otobrazhenii”, Izv. vuzov. Matematika, 2016, no. 10, 14–28 | Zbl

[7] Zhukovskii E.S., “O tochkakh sovpadeniya mnogoznachnykh vektornykh otobrazhenii metricheskikh prostranstv”, Mat. zametki, 100:3 (2016), 344–362 | DOI | MR | Zbl

[8] Zhukovskii E.S., “O vozmuscheniyakh vektorno nakryvayuschikh otobrazhenii i sistemakh uravnenii v metricheskikh prostranstvakh”, Sib. mat. zhurn., 57:2 (2016), 297–311 | DOI | MR | Zbl

[9] Perov A.I., “Mnogomernaya versiya printsipa obobschennogo szhatiya M. A. Krasnoselskogo”, Funkts. analiz i ego prilozheniya, 44:1 (2010), 83–87 | DOI | MR | Zbl

[10] Zhukovskii E.S., Panasenko E.A., “O nepodvizhnykh tochkakh mnogoznachnykh otobrazhenii v prostranstvakh s vektornoznachnoi metrikoi”, Tr. In-ta matematiki i mekhaniki UrO RAN, 24:1 (2018), 93–105 | DOI

[11] Arutyunov A.V., Zhukovskiy E.S., Zhukovskiy S.E., Zhukovskaya Z.T., “Kantorovich's fixed point theorem and coincidence point theorems for mappings in vector metric spaces”, Set-Valued Var. Anal., 30 (2022), 397–423 | DOI | MR | Zbl

[12] Azbelev N.V., Maksimov V.P., Rakhmatullina L.F., Elementy sovremennoi teorii funktsionalno-differentsialnykh uravnenii. Metody i prilozheniya, Regulyarnaya i khaoticheskaya dinamika, Institut kompyuternykh issledovanii, M.; Izhevsk, 2002, 384 pp. | MR

[13] Burago D.Yu., Burago Yu.D., Ivanov S.V., Kurs metricheskoi geometrii, Regulyarnaya i khaoticheskaya dinamika, Institut kompyuternykh issledovanii, M.; Izhevsk, 2004, 512 pp.

[14] Ioffe A.D., “Metricheskaya regulyarnost i subdifferentsialnoe ischislenie”, Uspekhi mat. nauk, 55:3 (333) (2000), 103–162 | DOI | MR | Zbl

[15] Zhukovskaya T.V., Merchela V., Shindyapin A.I., “O tochkakh sovpadeniya otobrazhenii v obobschennykh metricheskikh prostranstvakh”, Vestn. rossiiskikh un-tov. Matematika, 25:129 (2020), 18–24 | DOI | Zbl

[16] Merchela V., “Vklyucheniya s otobrazheniyami, deistvuyuschimi iz metricheskogo prostranstva v prostranstvo s rasstoyaniem”, Vestn. rossiiskikh un-tov. Matematika, 27:137 (2022), 27–36 | DOI | Zbl

[17] Krasnoselskii M.A., Vainikko G.M., Zabreiko P.P., Rutitskii Ya.B., Stetsenko V.Ya., Priblizhennoe reshenie operatornykh uravnenii, Nauka, M., 1969, 456 pp. | MR

[18] Borisovich Yu.G., Gelman B.D., Myshkis A.D., Obukhovskii V.V., Vvedenie v teoriyu mnogoznachnykh otobrazhenii i differentsialnykh vklyuchenii, LIBROKOM, M., 2011, 224 pp. | MR

[19] Natanson I.P., Teoriya funktsii veschestvennoi peremennoi, Lan, SPb., 1999, 560 pp. | MR

[20] Zhukovskii E.S., Merchela V., “Metod issledovaniya integralnykh uravnenii, ispolzuyuschii mnozhestvo nakryvaniya operatora Nemytskogo v prostranstvakh izmerimykh funktsii”, Differents. uravneniya, 58:1 (2022), 93–104 | DOI | Zbl

[21] Zhukovskii E.S., Pluzhnikova E.A., “Nakryvayuschie otobrazheniya v proizvedenii metricheskikh prostranstv i kraevye zadachi dlya differentsialnykh uravnenii, ne razreshennykh otnositelno proizvodnoi”, Differents. uravneniya, 49:4 (2013), 439–455 | Zbl

[22] Arutyunov A., de Oliveira V.A., Pereira F.L., Zhukovskiy E., Zhukovskiy S., “On the solvability of implicit differential inclusions”, Applicable Analysis, 94:1 (2015), 129–143 | DOI | MR | Zbl