A Bicomposition of Conical Projections
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 29 (2023) no. 3, pp. 73-87

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider a decomposition approach to the problem of finding the orthogonal projection of a given point onto a convex polyhedral cone represented by a finite set of its generators. The reducibility of an arbitrary linear optimization problem to such projection problem potentially makes this approach one of the possible new ways to solve large-scale linear programming problems. Such an approach can be based on the idea of a recurrent dichotomy that splits the original large-scale problem into a binary tree of conical projections corresponding to a successive decomposition of the initial cone into the sum of lesser subcones. The key operation of this approach consists in solving the problem of projecting a certain point onto a cone represented as the sum of two subcones with the smallest possible modification of these subcones and their arbitrary selection. Three iterative algorithms implementing this basic operation are proposed, their convergence is proved, and numerical experiments demonstrating both the computational efficiency of the algorithms and certain challenges in their application are performed.
Mots-clés : orthogonal projection, decomposition
Keywords: polyhedral cones, linear optimization.
@article{TIMM_2023_29_3_a4,
     author = {E. A. Nurminski},
     title = {A {Bicomposition} of {Conical} {Projections}},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {73--87},
     publisher = {mathdoc},
     volume = {29},
     number = {3},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2023_29_3_a4/}
}
TY  - JOUR
AU  - E. A. Nurminski
TI  - A Bicomposition of Conical Projections
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2023
SP  - 73
EP  - 87
VL  - 29
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TIMM_2023_29_3_a4/
LA  - ru
ID  - TIMM_2023_29_3_a4
ER  - 
%0 Journal Article
%A E. A. Nurminski
%T A Bicomposition of Conical Projections
%J Trudy Instituta matematiki i mehaniki
%D 2023
%P 73-87
%V 29
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TIMM_2023_29_3_a4/
%G ru
%F TIMM_2023_29_3_a4
E. A. Nurminski. A Bicomposition of Conical Projections. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 29 (2023) no. 3, pp. 73-87. http://geodesic.mathdoc.fr/item/TIMM_2023_29_3_a4/