A Bicomposition of Conical Projections
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 29 (2023) no. 3, pp. 73-87 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

We consider a decomposition approach to the problem of finding the orthogonal projection of a given point onto a convex polyhedral cone represented by a finite set of its generators. The reducibility of an arbitrary linear optimization problem to such projection problem potentially makes this approach one of the possible new ways to solve large-scale linear programming problems. Such an approach can be based on the idea of a recurrent dichotomy that splits the original large-scale problem into a binary tree of conical projections corresponding to a successive decomposition of the initial cone into the sum of lesser subcones. The key operation of this approach consists in solving the problem of projecting a certain point onto a cone represented as the sum of two subcones with the smallest possible modification of these subcones and their arbitrary selection. Three iterative algorithms implementing this basic operation are proposed, their convergence is proved, and numerical experiments demonstrating both the computational efficiency of the algorithms and certain challenges in their application are performed.
Mots-clés : orthogonal projection, decomposition
Keywords: polyhedral cones, linear optimization.
@article{TIMM_2023_29_3_a4,
     author = {E. A. Nurminski},
     title = {A {Bicomposition} of {Conical} {Projections}},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {73--87},
     year = {2023},
     volume = {29},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2023_29_3_a4/}
}
TY  - JOUR
AU  - E. A. Nurminski
TI  - A Bicomposition of Conical Projections
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2023
SP  - 73
EP  - 87
VL  - 29
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TIMM_2023_29_3_a4/
LA  - ru
ID  - TIMM_2023_29_3_a4
ER  - 
%0 Journal Article
%A E. A. Nurminski
%T A Bicomposition of Conical Projections
%J Trudy Instituta matematiki i mehaniki
%D 2023
%P 73-87
%V 29
%N 3
%U http://geodesic.mathdoc.fr/item/TIMM_2023_29_3_a4/
%G ru
%F TIMM_2023_29_3_a4
E. A. Nurminski. A Bicomposition of Conical Projections. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 29 (2023) no. 3, pp. 73-87. http://geodesic.mathdoc.fr/item/TIMM_2023_29_3_a4/

[1] NEOS Server: State-of-the-Art Solvers for Numerical Optimization URL: https://neos-server.org/neos/

[2] IBM ILOG CPLEX Optimizer URL: https://www.ibm.com/products/ilog-cplex-optimization-studio/cplex-optimizer

[3] The Leader in Decision Intelligence Technology - Gurobi Optimization URL: https://www.gurobi.com

[4] Cardinal Optimizer (COPT), [website] URL: https://www.shanshu.ai/copt

[5] GNU Linear Programming Kit (GLPK), [website] URL: https://www.gnu.org/software/glpk/

[6] Open Source Linear and Mixed-Integer Programming Software and Solvers [e-resource] URL: https://www.gurobi.com/resources/open-source-linear-and-mixed-integer-programming-software-and-solvers/

[7] Nurminski E.A., “Single-projection procedure for linear optimization”, J. Global Optim., 66:1 (2016), 95–110 | DOI | MR | Zbl

[8] Nurminskii E.A., “Proektsiya na vneshne zadannye poliedry”, Zhurn. vychisl. matematiki i mat. fiziki, 48:3 (2008), 387–396 | MR | Zbl

[9] Shikin E.V., Lineinye prostranstva i otobrazheniya, URSS, M., 2022, 312 pp.

[10] Nurminski E.A., Follow-up on conversion of outer projection to inner, [e-resource] | DOI

[11] Nesterov Yu.E., “Efficiency of coordinate descent methods on huge-scale optimization problems”, SIAM J. Optim., 22:2 (2022), 341–362 | DOI | MR

[12] Bauschke H.H., Borwein J.M., “On the convergence of von Neumann's alternating projection algorithm for two sets”, Set-Valued Anal., 1 (1993), 185–212 | DOI | MR | Zbl

[13] Luo Z.Q., Tseng P., “On the convergence of the coordinate descent method for convex differentiable minimization”, J. Optim Theory Appl., 72 (1992), 7–35 | DOI | MR | Zbl

[14] Wright S.J., “Coordinate descent algorithms”, Mathematical Programming, 151:1 (2015), 3–34 | DOI | MR | Zbl