Keywords: polyhedral cones, linear optimization.
@article{TIMM_2023_29_3_a4,
author = {E. A. Nurminski},
title = {A {Bicomposition} of {Conical} {Projections}},
journal = {Trudy Instituta matematiki i mehaniki},
pages = {73--87},
year = {2023},
volume = {29},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TIMM_2023_29_3_a4/}
}
E. A. Nurminski. A Bicomposition of Conical Projections. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 29 (2023) no. 3, pp. 73-87. http://geodesic.mathdoc.fr/item/TIMM_2023_29_3_a4/
[1] NEOS Server: State-of-the-Art Solvers for Numerical Optimization URL: https://neos-server.org/neos/
[2] IBM ILOG CPLEX Optimizer URL: https://www.ibm.com/products/ilog-cplex-optimization-studio/cplex-optimizer
[3] The Leader in Decision Intelligence Technology - Gurobi Optimization URL: https://www.gurobi.com
[4] Cardinal Optimizer (COPT), [website] URL: https://www.shanshu.ai/copt
[5] GNU Linear Programming Kit (GLPK), [website] URL: https://www.gnu.org/software/glpk/
[6] Open Source Linear and Mixed-Integer Programming Software and Solvers [e-resource] URL: https://www.gurobi.com/resources/open-source-linear-and-mixed-integer-programming-software-and-solvers/
[7] Nurminski E.A., “Single-projection procedure for linear optimization”, J. Global Optim., 66:1 (2016), 95–110 | DOI | MR | Zbl
[8] Nurminskii E.A., “Proektsiya na vneshne zadannye poliedry”, Zhurn. vychisl. matematiki i mat. fiziki, 48:3 (2008), 387–396 | MR | Zbl
[9] Shikin E.V., Lineinye prostranstva i otobrazheniya, URSS, M., 2022, 312 pp.
[10] Nurminski E.A., Follow-up on conversion of outer projection to inner, [e-resource] | DOI
[11] Nesterov Yu.E., “Efficiency of coordinate descent methods on huge-scale optimization problems”, SIAM J. Optim., 22:2 (2022), 341–362 | DOI | MR
[12] Bauschke H.H., Borwein J.M., “On the convergence of von Neumann's alternating projection algorithm for two sets”, Set-Valued Anal., 1 (1993), 185–212 | DOI | MR | Zbl
[13] Luo Z.Q., Tseng P., “On the convergence of the coordinate descent method for convex differentiable minimization”, J. Optim Theory Appl., 72 (1992), 7–35 | DOI | MR | Zbl
[14] Wright S.J., “Coordinate descent algorithms”, Mathematical Programming, 151:1 (2015), 3–34 | DOI | MR | Zbl