The time-optimal control problem of sequential traversal of several points by a Dubins car
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 29 (2023) no. 3, pp. 42-61 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

A time-optimal control problem of sequential traversal of three target points on the plane by a Dubins car is considered. The Dubins car model is used to describe the motion of an object in a horizontal plane with a constant speed and limited maneuverability. Fixed and unfixed sequences of traversal of target points are considered. The problem is discrete-continuous and contains three target sets. The difficulty of finding a solution lies in the impossibility to divide the problem into a series of tasks with two target points since it is necessary to consider information about all target points to minimize the traversal time. Necessary optimality conditions are formulated and used to develop an algorithm for constructing an optimal trajectory in the far zone. An explicit form of an optimal program control is obtained, and the problem of optimal control synthesis is solved. For a problem with a fixed traversal sequence, an algorithm for constructing an optimal trajectory for visiting three and two target points is developed. The results of the two algorithms are compared. The most interesting results of trajectory modeling for various cases of mutual position of target points are presented graphically. For a problem with an unfixed traversal sequence, a solution algorithm is constructed and the boundaries of the regions where the traversal sequence changes are found.
Mots-clés : Dubins car
Keywords: time-optimal control problem, optimal trajectory, fixed targets, target traversal algorithm.
@article{TIMM_2023_29_3_a2,
     author = {A. M. Mayer and A. A. Galyaev},
     title = {The time-optimal control problem of sequential traversal of several points by a {Dubins} car},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {42--61},
     year = {2023},
     volume = {29},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2023_29_3_a2/}
}
TY  - JOUR
AU  - A. M. Mayer
AU  - A. A. Galyaev
TI  - The time-optimal control problem of sequential traversal of several points by a Dubins car
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2023
SP  - 42
EP  - 61
VL  - 29
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TIMM_2023_29_3_a2/
LA  - ru
ID  - TIMM_2023_29_3_a2
ER  - 
%0 Journal Article
%A A. M. Mayer
%A A. A. Galyaev
%T The time-optimal control problem of sequential traversal of several points by a Dubins car
%J Trudy Instituta matematiki i mehaniki
%D 2023
%P 42-61
%V 29
%N 3
%U http://geodesic.mathdoc.fr/item/TIMM_2023_29_3_a2/
%G ru
%F TIMM_2023_29_3_a2
A. M. Mayer; A. A. Galyaev. The time-optimal control problem of sequential traversal of several points by a Dubins car. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 29 (2023) no. 3, pp. 42-61. http://geodesic.mathdoc.fr/item/TIMM_2023_29_3_a2/

[1] Chentsov A.G., Chentsov A.A., “Diskretno-nepreryvnaya zadacha marshrutizatsii s usloviyami predshestvovaniya”, Tr. In-ta matematiki i mekhaniki UrO RAN, 23:1 (2017), 275–292 | DOI

[2] Tormagov T.A., Generalov A.A., Shavin M.Yu., Rapoport L.B., “Zadachi upravleniya dvizheniem avtonomnykh kolesnykh robotov v tochnom zemledelii”, Giroskopiya i navigatsiya, 30:1 (116) (2022), 39–60 | DOI

[3] Rogachev G.N., Rogachev N.G., “Nechetkaya optimizatsiya v zadachakh planirovaniya peremeschenii robotizirovannykh skladskikh pogruzchikov”, Vestn. Samar. gos. tekhn. un-ta. Ser.: Tekhn. nauki, 2018, no. 1 (57), 18–30

[4] Vagizov M.R., Khabarov S.P., “Raschet traektorii dvizheniya BPLA s uchetom trebovaniya snizheniya ego skorosti v konechnoi tochke”, Informatsiya i Kosmos, 2022, no. 1, 122–128

[5] Markov A.A., “Neskolko primerov resheniya osobogo roda zadach o naibolshikh i naimenshikh velichinakh”, Soobsch. Kharkov. mat. obsch. Ser. 2, 1:2 (1889), 250–276

[6] Isaacs R., Differential games, John Wiley and Sons, NY, 1965, 384 pp. | Zbl

[7] Dubins L.E., “On curves of minimal length with a constraint on average curvature and with prescribed initial and terminal positions and tangents”, American J. Math., 79:3 (1957), 497–516 | DOI | MR | Zbl

[8] Berdyshev Yu.I., “O zadache obkhoda nelineinoi upravlyaemoi sistemoi tretego poryadka dvukh tochek”, Izv. Ural. gos. un-ta. Ser. 2, 2003, no. 26, 24–33 | Zbl

[9] Berdyshev Yu.I., Nelineinye zadachi posledovatelnogo upravleniya i ikh prilozhenie, UrO RAN, Ekaterinburg, 2015, 193 pp.

[10] Berdyshev Yu.I., “Zadacha posledovatelnogo obkhoda nelineinym upravlyaemym ob'ektom sovokupnosti gladkikh mnogoobrazii”, Differents. uravneniya, 38:11 (2002), 1451–1461 | MR | Zbl

[11] Chen Z., Shima T., “Shortest Dubins paths through three points”, Automatica, 105 (2019), 368–375 | DOI | MR | Zbl

[12] Isaiah P., Shima T., “Motion planning algorithms for the Dubins travelling salesperson problem”, Automatica, 53 (2015), 247–255 | DOI | MR | Zbl

[13] Patsko V.S., Fedotov A.A., “Analiticheskoe opisanie mnozhestva dostizhimosti dlya mashiny Dubinsa”, Tr. In-ta matematiki i mekhaniki UrO RAN, 26:1 (2020), 182–197 | DOI | MR

[14] Buzikov M.E., Galyaev A.A., “Algoritmy vychisleniya optimalnoi traektorii perekhvata podvizhnoi tseli mashinoi Dubinsa”, Materialy 14-i Multikonferentsii po problemam upravleniya (MKPU-2021, Divnomorskoe, Gelendzhik), v. 1, Yuzhnyi federalnyi universitet, Rostov-na-Donu; Taganrog, 2021, 73–76

[15] Buzikov M.E., Galyaev A.A., “Minimum-time lateral interception of a moving target by a Dubins car”, Automatica, 135 (2022) | DOI | MR | Zbl

[16] Buzikov M.E., Galyaev A.A., “Perekhvat podvizhnoi tseli mashinoi Dubinsa za kratchaishee vremya”, Avtomatika i telemekhanika, 2021, no. 5, 3–19 | DOI | MR | Zbl

[17] Cockayne E.J., Hal G.W.C., “Plane motion of a particle subject to curvature constraints”, SIAM J. Control Optimi., 13 (1) (1975), 197–220 | DOI | MR | Zbl