Keywords: time-optimal control problem, optimal trajectory, fixed targets, target traversal algorithm.
@article{TIMM_2023_29_3_a2,
author = {A. M. Mayer and A. A. Galyaev},
title = {The time-optimal control problem of sequential traversal of several points by a {Dubins} car},
journal = {Trudy Instituta matematiki i mehaniki},
pages = {42--61},
year = {2023},
volume = {29},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TIMM_2023_29_3_a2/}
}
TY - JOUR AU - A. M. Mayer AU - A. A. Galyaev TI - The time-optimal control problem of sequential traversal of several points by a Dubins car JO - Trudy Instituta matematiki i mehaniki PY - 2023 SP - 42 EP - 61 VL - 29 IS - 3 UR - http://geodesic.mathdoc.fr/item/TIMM_2023_29_3_a2/ LA - ru ID - TIMM_2023_29_3_a2 ER -
A. M. Mayer; A. A. Galyaev. The time-optimal control problem of sequential traversal of several points by a Dubins car. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 29 (2023) no. 3, pp. 42-61. http://geodesic.mathdoc.fr/item/TIMM_2023_29_3_a2/
[1] Chentsov A.G., Chentsov A.A., “Diskretno-nepreryvnaya zadacha marshrutizatsii s usloviyami predshestvovaniya”, Tr. In-ta matematiki i mekhaniki UrO RAN, 23:1 (2017), 275–292 | DOI
[2] Tormagov T.A., Generalov A.A., Shavin M.Yu., Rapoport L.B., “Zadachi upravleniya dvizheniem avtonomnykh kolesnykh robotov v tochnom zemledelii”, Giroskopiya i navigatsiya, 30:1 (116) (2022), 39–60 | DOI
[3] Rogachev G.N., Rogachev N.G., “Nechetkaya optimizatsiya v zadachakh planirovaniya peremeschenii robotizirovannykh skladskikh pogruzchikov”, Vestn. Samar. gos. tekhn. un-ta. Ser.: Tekhn. nauki, 2018, no. 1 (57), 18–30
[4] Vagizov M.R., Khabarov S.P., “Raschet traektorii dvizheniya BPLA s uchetom trebovaniya snizheniya ego skorosti v konechnoi tochke”, Informatsiya i Kosmos, 2022, no. 1, 122–128
[5] Markov A.A., “Neskolko primerov resheniya osobogo roda zadach o naibolshikh i naimenshikh velichinakh”, Soobsch. Kharkov. mat. obsch. Ser. 2, 1:2 (1889), 250–276
[6] Isaacs R., Differential games, John Wiley and Sons, NY, 1965, 384 pp. | Zbl
[7] Dubins L.E., “On curves of minimal length with a constraint on average curvature and with prescribed initial and terminal positions and tangents”, American J. Math., 79:3 (1957), 497–516 | DOI | MR | Zbl
[8] Berdyshev Yu.I., “O zadache obkhoda nelineinoi upravlyaemoi sistemoi tretego poryadka dvukh tochek”, Izv. Ural. gos. un-ta. Ser. 2, 2003, no. 26, 24–33 | Zbl
[9] Berdyshev Yu.I., Nelineinye zadachi posledovatelnogo upravleniya i ikh prilozhenie, UrO RAN, Ekaterinburg, 2015, 193 pp.
[10] Berdyshev Yu.I., “Zadacha posledovatelnogo obkhoda nelineinym upravlyaemym ob'ektom sovokupnosti gladkikh mnogoobrazii”, Differents. uravneniya, 38:11 (2002), 1451–1461 | MR | Zbl
[11] Chen Z., Shima T., “Shortest Dubins paths through three points”, Automatica, 105 (2019), 368–375 | DOI | MR | Zbl
[12] Isaiah P., Shima T., “Motion planning algorithms for the Dubins travelling salesperson problem”, Automatica, 53 (2015), 247–255 | DOI | MR | Zbl
[13] Patsko V.S., Fedotov A.A., “Analiticheskoe opisanie mnozhestva dostizhimosti dlya mashiny Dubinsa”, Tr. In-ta matematiki i mekhaniki UrO RAN, 26:1 (2020), 182–197 | DOI | MR
[14] Buzikov M.E., Galyaev A.A., “Algoritmy vychisleniya optimalnoi traektorii perekhvata podvizhnoi tseli mashinoi Dubinsa”, Materialy 14-i Multikonferentsii po problemam upravleniya (MKPU-2021, Divnomorskoe, Gelendzhik), v. 1, Yuzhnyi federalnyi universitet, Rostov-na-Donu; Taganrog, 2021, 73–76
[15] Buzikov M.E., Galyaev A.A., “Minimum-time lateral interception of a moving target by a Dubins car”, Automatica, 135 (2022) | DOI | MR | Zbl
[16] Buzikov M.E., Galyaev A.A., “Perekhvat podvizhnoi tseli mashinoi Dubinsa za kratchaishee vremya”, Avtomatika i telemekhanika, 2021, no. 5, 3–19 | DOI | MR | Zbl
[17] Cockayne E.J., Hal G.W.C., “Plane motion of a particle subject to curvature constraints”, SIAM J. Control Optimi., 13 (1) (1975), 197–220 | DOI | MR | Zbl