Closed Mappings and Construction of Extension Models
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 29 (2023) no. 3, pp. 274-295
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

The problem of reachability in a topological space is studied under constraints of asymptotic nature arising from weakening the requirement that the image of a solution belong to a given set. The attraction set that arises in this case in the topological space is a regularization of certain kind for the image of the preimage of the mentioned set (the image and the preimage are defined for generally different mappings). When constructing natural compact extensions of the reachability problem with constraints of asymptotic nature generated by a family of neighborhoods of a fixed set, the case was studied earlier where the topological space in which the results of one or another choice of solution are realized satisfies the axiom $T_2$. In the present paper, for a number of statements related to compact extensions, it is possible to use for this purpose a $T_1$ space, which seems to be quite important from a theoretical point of view, since it is possible to find out the exact role of the axiom $T_2$ in questions related to correct extensions of reachability problems. We study extension models using ultrafilters of a broadly understood measurable space with detailing of the main elements in the case of a reachability problem in the space of functionals with the topology of a Tychonoff power of the real line with the usual $|\cdot |$-topology. The general constructions of extension models are illustrated by an example of a nonlinear control problem with state constraints.
Keywords: attraction set, extension model, ultrafilter.
@article{TIMM_2023_29_3_a16,
     author = {A. G. Chentsov},
     title = {Closed {Mappings} and {Construction} of {Extension} {Models}},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {274--295},
     year = {2023},
     volume = {29},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2023_29_3_a16/}
}
TY  - JOUR
AU  - A. G. Chentsov
TI  - Closed Mappings and Construction of Extension Models
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2023
SP  - 274
EP  - 295
VL  - 29
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TIMM_2023_29_3_a16/
LA  - ru
ID  - TIMM_2023_29_3_a16
ER  - 
%0 Journal Article
%A A. G. Chentsov
%T Closed Mappings and Construction of Extension Models
%J Trudy Instituta matematiki i mehaniki
%D 2023
%P 274-295
%V 29
%N 3
%U http://geodesic.mathdoc.fr/item/TIMM_2023_29_3_a16/
%G ru
%F TIMM_2023_29_3_a16
A. G. Chentsov. Closed Mappings and Construction of Extension Models. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 29 (2023) no. 3, pp. 274-295. http://geodesic.mathdoc.fr/item/TIMM_2023_29_3_a16/

[1] Daffin R. Dzh., “Beskonechnye programmy”, Lineinye neravenstva i smezhnye voprosy, IL, M., 1959, 263–267

[2] Golshtein E.G., Teoriya dvoistvennosti v matematicheskom programmirovanii i ee prilozheniya, Nauka, M., 1971, 351 pp.

[3] Varga Dzh., Optimalnoe upravlenie differentsialnymi i funktsionalnymi uravneniyami, Nauka, M., 1977, 620 pp.

[4] Krasovskii N.N., Subbotin A.I., “Alternativa dlya igrovoi zadachi sblizheniya ”, Prikladnaya matematika i mekhanika, 34:6 (1970), 1005–1022 | Zbl

[5] Krasovskii N.N., Subbotin A.I., Pozitsionnye differentsialnye igry, Nauka, M., 1974, 456 pp. | MR

[6] Gamkrelidze R.V., Osnovy optimalnogo upravleniya, Izd-vo Tbilis. un-ta, Tbilisi, 1975, 253 pp.

[7] Chentsov A.G., Baklanov A.P., “Ob odnoi zadache asimptoticheskogo analiza, svyazannoi s postroeniem oblasti dostizhimosti”, Tr. MIAN, 291 (2015), 292–311 | DOI | Zbl

[8] Chentsov A.G., Baklanov A.P., Savenkov I.I., “Zadacha o dostizhimosti s ogranicheniyami asimptoticheskogo kharaktera”, Izv. In-ta matematiki i informatiki Udmurt. gos. un-ta, 47:1 (2016), 54–118 | MR | Zbl

[9] Chentsov A.G., “Rasshireniya abstraktnykh zadach o dostizhimosti: nesekventsialnaya versiya”, Tr. In-ta matematiki i mekhaniki UrO RAN, 13:2 (2007), 184–217

[10] Chentsov A.G., Pytkeev E.G., “Constraints of asymptotic nature and attainability problems”, Vestnik Udmurt.Univ. Ser. Matematika. Mekhanika. Komp'yuternye Nauki, 29:4 (2019), 569–582 | DOI | MR | Zbl

[11] Kuratovskii K., Mostovskii A., Teoriya mnozhestv, Mir, M., 1970, 416 pp.

[12] Engelking R., Obschaya topologiya, Mir, M., 1986, 751 pp.

[13] Chentsov A.G., Asymptotic attainability, Kluwer Acad. Publ., Dordrecht; Boston; London, 1997, 322 pp. | MR | Zbl

[14] Burbaki N., Obschaya topologiya. Osnovnye struktury, Nauka, M., 1968, 272 pp.

[15] Bulinskii A.V., Shiryaev A.N., Teoriya sluchainykh protsessov, Fizmatlit, M., 2005, 402 pp.

[16] Neve Zh., Matematicheskie osnovy teorii veroyatnostei, Mir, M., 1969, 309 pp.

[17] Chentsov A.G., “Nekotorye svoistva ultrafiltrov, svyazannye s konstruktsiyami rasshirenii”, Vestn. Udmurt. un-ta. Matematika. Mekhanika. Kompyuternye nauki, 2014, no. 1, 87–101 | Zbl

[18] Chentsov A.G., Morina S.I., Extensions and relaxations, Kluwer Acad. Publ., Dordrecht, 2002, 408 pp. | MR | Zbl

[19] Chentsov A.G., “Preobrazovaniya ultrafiltrov i ikh primenenie v konstruktsiyakh mnozhestv prityazheniya”, Vestn. Udmurt. un-ta. Matematika. Mekhanika. Kompyuternye nauki, 2012, no. 3, 85–102 | MR | Zbl

[20] Chentsov A.G., “K voprosu o realizatsii elementov prityazheniya v abstraktnykh zadachakh o dostizhimosti”, Vestn. Udmurt. un-ta. Matematika. Mekhanika. Kompyuternye nauki, 25:2 (2015), 212–229 | Zbl

[21] Chentsov A.G., Elementy konechno-additivnoi teorii mery, I, UGTU-UPI, Ekaterinburg, 2008, 388 pp.

[22] Danford N., Shvarts Dzh., Lineinye operatory: Obschaya teoriya, IL, M., 1962, 895 pp.

[23] Chentsov A.G., Elementy konechno-additivnoi teorii mery, II, UGTU-UPI, Ekaterinburg, 2010, 541 pp.

[24] Chentsov A.G., “Yarusnye otobrazheniya i preobrazovaniya na osnove ultrafiltrov”, Tr. In-ta matematiki i mekhaniki UrO RAN, 18:4 (2012), 298–314

[25] Krasovskii N.N., Teoriya upravleniya dvizheniem, Nauka, M., 1968, 475 pp.

[26] Panasyuk A.I., Panasyuk V.I., Asimptoticheskaya magistralnaya optimizatsiya upravlyaemykh sistem, Nauka i tekhnika, Minsk, 1986, 296 pp.

[27] Kryazhimskii A.V., “K teorii pozitsionnykh differentsialnykh igr sblizheniya-ukloneniya”, Dokl. AN SSSR, 239:4 (1978), 779–782 | MR | Zbl

[28] Billingsli P., Skhodimost veroyatnostnykh mer, Nauka, M., 1977, 352 pp.