@article{TIMM_2023_29_3_a14,
author = {O. V. Khamisov},
title = {Optimization of the {Optimal} {Value} {Function} in {Problems} of {Convex} {Parametric} {Programming}},
journal = {Trudy Instituta matematiki i mehaniki},
pages = {247--260},
year = {2023},
volume = {29},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TIMM_2023_29_3_a14/}
}
TY - JOUR AU - O. V. Khamisov TI - Optimization of the Optimal Value Function in Problems of Convex Parametric Programming JO - Trudy Instituta matematiki i mehaniki PY - 2023 SP - 247 EP - 260 VL - 29 IS - 3 UR - http://geodesic.mathdoc.fr/item/TIMM_2023_29_3_a14/ LA - ru ID - TIMM_2023_29_3_a14 ER -
O. V. Khamisov. Optimization of the Optimal Value Function in Problems of Convex Parametric Programming. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 29 (2023) no. 3, pp. 247-260. http://geodesic.mathdoc.fr/item/TIMM_2023_29_3_a14/
[1] Izmailov A.F., Chuvstvitelnost v optimizatsii, Fizmatlit, M., 2006, 248 pp.
[2] Levitin E.S., Teoriya vozmuschenii v matematicheskom programmirovanii i ee prilozheniya, Nauka, M., 1992, 360 pp. | MR
[3] Bank G., Guddat J., Klatte K., Kummer B., Tammer K., Non-linear parametric optimization, Birkhäuser, Basel, 1982, 228 pp. | DOI | MR
[4] Guddat J., Vasquez V.G., Jongen H.Th., Parametric optimization: singularities, pathfollowing and jumps, Springer Fachmedien, Wiesbaden, 1990, 191 pp. | DOI | MR
[5] Klatte D., Kummer B., Nonsmooth equations in optimization. Regularity, calculus, methods and applications, Kluwer Acad. Publ., Dordrecht, 2002, 362 pp. | DOI | MR | Zbl
[6] Zlobec S., Stable parametric programming, Springer-Science, NY, 2001, 329 pp. | DOI | MR
[7] Eremin I.I., Protivorechivye modeli modeli optimalnogo planirovaniya, Nauka, M., 1988, 160 pp. | MR
[8] Parametricheskaya optimizatsiya i metody approksimatsii nesobstvennykh zadach matematicheskogo programmirovaniya, Sb. statei, UNTs AN SSSR, Sverdlovsk, 1985, 136 pp.
[9] Eremin I.I., Mazurov V.D., Astafev N.N., Nesobstvennye zadachi lineinogo i vypuklogo programmirovaniya, Nauka, M., 1983, 336 pp.
[10] Fedorov V.V., Chislennye metody maksimina, Nauka, M., 1979, 280 pp.
[11] Fiacco A.V., Kyparisis J., “Convexity and concavity properties of the optimal value function in parametric nonlinear programming”, J. Optim. Theory Appl., 48 (1986), 95–126 | DOI | MR | Zbl
[12] Kyparisis J., Fiacco A.V., “Generalized convexity and concavity of the optimal value function in nonlinear programming”, Math. Progr., 39 (1987), 285–304 | DOI | MR | Zbl
[13] Aubin J.P., “Lipschitz behaviour of solutions to convex minimization problems”, Math. Oper. Research, 9:1 (1984), 87–111 | DOI | MR | Zbl
[14] Gfrerer H., Klatte D., “Lipschitz and Hölder stability of optimization problems and generalizex equations”, Math. Progr., Ser A, 158 (2016), 35–75 | DOI | MR | Zbl
[15] Sukharev A.G., Minimaksnye algoritmy v zadachakh chislennogo analiza, Nauka, M., 1989, 304 pp.
[16] Levitin E.S., “O reduktsii nevypuklykh zadach obobschennogo polubeskonechnogo matematicheskogo programmirovaniya k vypuklym zadacham polubeskonechnogo programmirovaniya”, Avtomatika i telemekhanika, 1998, no. 1, 28–34 | Zbl
[17] Bulatov V.P., “Metody resheniya mnogoekstremalnykh zadach (globalnyi poisk)”, Metody chislennogo analiza i optimizatsii, eds. red. B. A. Beltyukov, V. P. Bulatov, Novosibirsk, 1987, 133–157 | Zbl
[18] Khamisov O.V., “Globalnaya optimizatsiya funktsii s vognutoi minorantoi”, Zhurn. vychisl. matematiki i mat. fiziki, 44:9 (2004), 1552–1563 | MR
[19] Floudas C.A., Deterministic global optimization. Theory, methods and applications, Springer, NY, 2000, 742 pp. | MR
[20] Gorski J., Pfeuffer F., Klamroth K., “Biconvex sets and optimization with biconvex functions: a survey and extensions”, Math. Meth. Oper. Res., 66 (2007), 373–407 | DOI | MR | Zbl
[21] Meng Z., Jiang M., Shen R., Xu L., Dang C., “An objective penalty function method for biconvex programming”, J. Glob. Optim., 81 (2021), 599–620 | DOI | MR | Zbl
[22] Sukharev A.G., Timokhov A.V., Fedorov V.V., Kurs metodov optimizatsii, Fizmatlit, M., 2005, 368 pp. | MR
[23] Bulatov V.P., Metody pogruzheniya v zadachakh optimizatsii, Nauka, Novosibirsk, 1977, 164 pp.
[24] Bulatov V.P., Belykh T.I., “Chislennye metody resheniya mnogoekstremalnykh zadach, svyazannye s obratnymi zadachami matematicheskogo programmirovaniya”, Izv. vuzov. Matematika, 48:2 (2007), 14–20
[25] Norkin V.I., “O metode Piyavskogo dlya resheniya obschei zadachi globalnoi optimizatsii”, Zhurn. vychisl. matematiki i mat. fiziki, 32:7 (1992), 992–1006 | MR | Zbl
[26] Eremin I.I., “Nekotorye voprosy kusochno-lineinogo programmirovaniya”, Izv. vuzov. Matematika, 1997, no. 12, 49–61 | Zbl
[27] Horst R., Tuy H., Global optimization(Deterministic approaches), Springer-Verlag, Berlin, 1996, 727 pp. | MR | Zbl
[28] Bulatov V.P., Khamisov O.V., “Metody otsecheniya v $E^{n+1}$ dlya resheniya zadach globalnoi optimizatsii na odnom klasse funktsii”, Zhurn. vychisl. matematiki i mat. fiziki, 47:11 (2007), 1830–1842 | MR
[29] Pshenichnyi B.N., Neobkhodimye usloviya ekstremuma, Nauka, M., 1982, 144 pp. | MR
[30] Khamisov O.V., “Approximation of parametrically given polyhedral sets”, Proceedings of the Workshop on Applied Mathematics and Fundamental Computer Science, eds. Sergei S. Goncharov, Yuri G. Evtushenko, Omsk, 2020 URL: https://ceur-ws.org/Vol-2642/paper10.pdf
[31] Gaivin J., “A necessary and sufficient regularity condition to have bounded multipliers in nonconvex programming”, Math. Progr., 12 (1977), 136–138 | DOI | MR
[32] Hiriart-Urruty J.-B., Lemarèchal C., Convex analysis and minimization algorithms I, Springer-Verlag, Berlin, 1993, 431 pp. | DOI | MR