The Structure of the Essential Spectrum and the Discrete Spectrum of the Energy Operator for Six-Electron Systems in the Hubbard Model. The Second Singlet State
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 29 (2023) no. 3, pp. 210-230 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

We consider the energy operator of six-electron systems in the Hubbard model and study the structure of the essential spectrum and the discrete spectrum of the system for the second singlet state of the system. In the one- and two-dimensional cases, it is shown that the essential spectrum of the six-electron second singlet state operator is the union of seven closed intervals, and the discrete spectrum of the system consists of a single eigenvalue lying below (above) the domain of the lower (upper, respectively) edge of the essential spectrum of this operator. In the three-dimensional case, there are the following situations for the essential and discrete spectra of the six-electron second singlet state operator: (a) the essential spectrum is the union of seven closed intervals, and the discrete spectrum consists of a single eigenvalue; (b) the essential spectrum is the union of four closed intervals, and the discrete spectrum is empty; (c) the essential spectrum is the union of two closed intervals, and the discrete spectrum is empty; (d) the essential spectrum is a closed interval, and the discrete spectrum is empty. Conditions are found under which each of the situations takes place.
Keywords: Hubbard model of six-electron systems, spectrum, essential spectrum, discrete spectrum, octet state, quintet state, triplet state, singlet state.
@article{TIMM_2023_29_3_a12,
     author = {S. M. Tashpulatov},
     title = {The {Structure} of the {Essential} {Spectrum} and the {Discrete} {Spectrum} of the {Energy} {Operator} for {Six-Electron} {Systems} in the {Hubbard} {Model.} {The} {Second} {Singlet} {State}},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {210--230},
     year = {2023},
     volume = {29},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2023_29_3_a12/}
}
TY  - JOUR
AU  - S. M. Tashpulatov
TI  - The Structure of the Essential Spectrum and the Discrete Spectrum of the Energy Operator for Six-Electron Systems in the Hubbard Model. The Second Singlet State
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2023
SP  - 210
EP  - 230
VL  - 29
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TIMM_2023_29_3_a12/
LA  - ru
ID  - TIMM_2023_29_3_a12
ER  - 
%0 Journal Article
%A S. M. Tashpulatov
%T The Structure of the Essential Spectrum and the Discrete Spectrum of the Energy Operator for Six-Electron Systems in the Hubbard Model. The Second Singlet State
%J Trudy Instituta matematiki i mehaniki
%D 2023
%P 210-230
%V 29
%N 3
%U http://geodesic.mathdoc.fr/item/TIMM_2023_29_3_a12/
%G ru
%F TIMM_2023_29_3_a12
S. M. Tashpulatov. The Structure of the Essential Spectrum and the Discrete Spectrum of the Energy Operator for Six-Electron Systems in the Hubbard Model. The Second Singlet State. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 29 (2023) no. 3, pp. 210-230. http://geodesic.mathdoc.fr/item/TIMM_2023_29_3_a12/

[1] Hubbard J., “Electron correlations in narrow energy bands”, Proc. Roy. Soc. A, 276 (1963), 238–257 | DOI | MR

[2] Gutzwiller M.C., “Effect of correlation on the ferromagnetism of transition metals”, Phys. Rev. Lett., 10:159 (1963), 159–162 | DOI

[3] Kanamori J., “Electron correlation and ferromagnetism of transition metals”, Prog. Theor. Phys., 30:3 (1963), 275–289 | DOI | Zbl

[4] Anderson P.W., “Localized magnetic states in metals”, Phys. Rev., 124 (1961), 41–53 | DOI | MR

[5] Shubin S.P., Wonsowsky S.V., “On the electron theory of metals”, Proc. Roy. Soc. A, 145 (1934), 159–172 | DOI

[6] Izyumov Yu.A., “Model Khabbarda v rezhime silnykh korrelyatsii”, Uspekhi fiz. nauk, 165:4 (1995), 403–427 | DOI

[7] Arovas D.P., Berg E., Kivelson S.A., and Raghy S., “The Hubbard model”, Annu. Rev. Condens. Matter Physics, 13 (2022), 239–274 | DOI

[8] Ovchinnikov S.G., Shneider E.I., “Spektralnye funktsii modeli Khabbarda v sluchae polovinnogo zapolneniya”, Fizika tverdogo tela, 46:8 (2004), 1428–1432

[9] Izyumov Yu.A., Chaschin N.I., Alekseev D.S., Teoriya silno korrelirovannykh sistem. Metod proizvodyaschego funktsionala, NITs “Regulyarnaya i khaoticheskaya dinamika, In-t kompyuternykh issledovanii”, M.; Izhevsk, 2006, 390 pp.

[10] Karpenko B.V., Dyakin V.V., Budrina G.L., “Dva elektrona v modeli Khabbarda”, Fizika metallov i metallovedenie, 61 (1986), 702–706

[11] Tashpulatov S.M., “O spektralnykh svoistvakh trekhelektronnykh sistem v modeli Khabbarda”, Teoret. i mat. fizika, 179:3 (2014), 387–405 | DOI | Zbl

[12] Tashpulatov S.M., “Spectra of the energy operator of four-electron systems in the triplete state in the Hubbard model”, J. Phys. Conf. Ser., 697 (2016), 012025, 1–25 | DOI | MR

[13] Tashpulatov S.M., “The structure of essential spectra and discrete spectrum of four-electron systems in the Hubbard model in a singlet state”, Lobachevskii J. Math., 38:3 (2017), 530–541 | DOI | MR | Zbl

[14] Tashpulatov S.M., “Structure of essential spectrum and discrete spectra of the energy operator of five-electron systems in the Hubbard model-doublet state”, Operator Theory and Differential Equations, eds. A.G. Kusraev and Z.D. Totieva, Birkhäuser, Cham, 2021, 275–301 | DOI | MR | Zbl

[15] Tashpulatov S.M., “Structure of essential spectra and discrete spectra of the energy operator of six-electron systems in the Hubbard model. First quintet and first singlet states”, J. Appl. Math. Phys., 10:11 (2022), 3424–3461 | DOI | MR

[16] Rid M., Saimon B., Metody sovremennoi matematicheskoi fiziki, v. 1, Funktsionalnyi analiz, Mir, Moskva, 1977, 360 pp. | MR

[17] Rid M., Saimon B., Metody sovremennoi matematicheskoi fiziki, v. 4, Analiz operatorov, Mir, Moskva, 1982, 432 pp. | MR

[18] Ichinose T., “Spectral properties of tensor products of linear operators. I”, Trans. American Math. Soc., 235 (1978), 75–113 | DOI | MR | Zbl

[19] Ichinose T., “Spectral properties of tensor products of linear operators. II: the approximate point spectrum and Kato essential spectrum”, Trans. American Math. Soc., 237 (1978), 223–254 | DOI | MR | Zbl

[20] Ichinose T., “Tensor products of linear operators. Spectral theory”, Banach Center Publications, 8, PWN-Polish Sci. Publ., Warsaw, 1982, 294–300 | DOI

[21] Naimark M.A., Normirovannye koltsa, M., 1968, 664 pp. | MR

[22] Valkov V.V.,Ovchinnikov C.G., Petrakovskii O.G., “Spektr vozbuzhdenii dvukhmagnonnykh sistem v legkoosnom kvazimernom ferromagnetike”, Fizika tverdogo tela, 30:10 (1988), 3044–3047