Mots-clés : Fejér process
@article{TIMM_2023_29_3_a1,
author = {V. V. Vasin},
title = {Fej\'er-Type {Iterative} {Processes} in the {Constrained} {Quadratic} {Minimization} {Problem}},
journal = {Trudy Instituta matematiki i mehaniki},
pages = {26--41},
year = {2023},
volume = {29},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TIMM_2023_29_3_a1/}
}
V. V. Vasin. Fejér-Type Iterative Processes in the Constrained Quadratic Minimization Problem. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 29 (2023) no. 3, pp. 26-41. http://geodesic.mathdoc.fr/item/TIMM_2023_29_3_a1/
[1] Vasin V. V., Osnovy teorii nekorrektnykh zadach, Izd-vo SO RAN, Novosibirsk, 2020, 312 pp.
[2] Vasin V. V., Ageev A. L., Ill-posed problems with a priori information, VSP, Utrecht, The Netherlands, 1995, 255 pp. | MR | Zbl
[3] Lawson C. T., Hansen R. J., Solving least squares problem, SIAM, Philadelphia, 1995, 337 pp. | MR
[4] Fejér L., “Über die Lage der Nullstellen fon Polinomen,die aus Minimumforderung gewisser Art entspringen”, Math. Ann., 85:1 (1922), 41–48 | DOI | MR
[5] Motzkin T. S., Schoenberg J. J., “The relaxation method for linear inequalities”, Canad. J. Math., 6:3 (1954), 393–404 | DOI | MR | Zbl
[6] Agmon S., “The relaxation method for linear inequality”, Canad. J. Math., 6:3 (1954), 382–392 | DOI | MR | Zbl
[7] Eremin I.I., “Obobschenie relaksatsionnogo metoda Motskina — Agmona”, Uspekhi mat. nauk, 20:2 (1965), 183–187 | MR | Zbl
[8] Eremin I.I., “Metody feierovskikh priblizhenii v vypuklom programmirovanii”, Mat. zametki, 3:2 (1968), 217–234
[9] Eremin I. I., Teoriya lineinoi optimizatsii, Izd-vo UrO RAN, Ekaterinburg, 1998, 247 pp.
[10] Eremin I. I., Sistemy lineinykh neravenstv i lineinaya optimizatsiya, Nauch. izdanie, Izd-vo RAN, Ekaterinburg, 2007, 238 pp.
[11] Vasin V. V., Eremin I. I., Operators and iterative processes of Fejér type. Theory and applications, Walter de Gruyter, Berlin; NY, 2009, 155 pp. | MR
[12] Vasin V. V., “Iteratsionnye metody resheniya nekorrektnykh zadach s apriornoi informatsiei v gilbertovykh prostranstvakh”, Zhurn. vychisl. matematiki i mat. fiziki, 22:7 (1988), 971–980
[13] Eicke B., Konvex-restringierte schlechtgestellte Probleme und ihre Regularizierung durch Iterationverfahren, Dr. Diss., Berlin, 1991 | Zbl
[14] Martinet B., “Determination approachee d'un point fixe d'une applications pseudo-contractante”, C. R. Acad. Sci., 274 (1972), 163–175, Paris | MR
[15] Opial Z., “Weak convergence of the sequence of successive approximations for nonexpansive mappings”, Bull. Amer. Math. Soc., 73:4 (1967), 591–597 | DOI | MR | Zbl
[16] Halperin B., “Fixed points of nonexpansive maps”, Bull. Amer. Math. Soc., 73:6 (1967), 957–961 | DOI | MR
[17] Vainikko G. M., “Otsenki pogreshnosti metoda posledovatelnykh priblizhenii dlya nekorrektnykh zadach”, Avtomatika i telemekhanika, 1980, no. 3, 84–92 | Zbl
[18] Karmanov V. G., Matematicheskoe programmirovanie, Fizmatlit, M., 2008, 260 pp.
[19] Bakushinskii A. B., Goncharskii A. V., Iterativnye metody resheniya nekorrektnykh zadach, Nauka, M., 1989, 127 pp.