Mots-clés : quasiconvex function
@article{TIMM_2023_29_3_a0,
author = {S. S. Ablaev and F. S. Stonyakin and M. S. Alkousa and A. V. Gasnikov},
title = {Adaptive {Subgradient} {Methods} for {Mathematical} {Programming} {Problems} with {Quasiconvex} {Functions}},
journal = {Trudy Instituta matematiki i mehaniki},
pages = {7--25},
year = {2023},
volume = {29},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TIMM_2023_29_3_a0/}
}
TY - JOUR AU - S. S. Ablaev AU - F. S. Stonyakin AU - M. S. Alkousa AU - A. V. Gasnikov TI - Adaptive Subgradient Methods for Mathematical Programming Problems with Quasiconvex Functions JO - Trudy Instituta matematiki i mehaniki PY - 2023 SP - 7 EP - 25 VL - 29 IS - 3 UR - http://geodesic.mathdoc.fr/item/TIMM_2023_29_3_a0/ LA - ru ID - TIMM_2023_29_3_a0 ER -
%0 Journal Article %A S. S. Ablaev %A F. S. Stonyakin %A M. S. Alkousa %A A. V. Gasnikov %T Adaptive Subgradient Methods for Mathematical Programming Problems with Quasiconvex Functions %J Trudy Instituta matematiki i mehaniki %D 2023 %P 7-25 %V 29 %N 3 %U http://geodesic.mathdoc.fr/item/TIMM_2023_29_3_a0/ %G ru %F TIMM_2023_29_3_a0
S. S. Ablaev; F. S. Stonyakin; M. S. Alkousa; A. V. Gasnikov. Adaptive Subgradient Methods for Mathematical Programming Problems with Quasiconvex Functions. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 29 (2023) no. 3, pp. 7-25. http://geodesic.mathdoc.fr/item/TIMM_2023_29_3_a0/
[1] Polyak B.T., “Odin obschii metod resheniya ekstremalnykh zadach”, Dokl. AN SSSR, 174:1 (1967), 33–36 | Zbl
[2] Huang Y., Lin Q., Single-loop switching subgradient methods for non-smooth weakly convex optimization with non-smooth convex constraints, 2023, 49 pp., arXiv: 2301.13314
[3] Bayandina A., Dvurechensky P., Gasnikov A., Stonyakin F., Titov A., “Mirror descent and convex optimization problems with non-smooth inequality constraints”, Large-Scale and Distributed Optimization, Lecture Notes in Math., 2227, eds. Pontus Giselsson and Anders Rantzer, 2018, 181–213 | DOI | MR | Zbl
[4] Lagae S., “New efficient techniques to solve sparse structured linear systems, with applications to truss topology optimization”, Ecole polytechnique de Louvain, Université catholique de Louvain, 2017 URL: https://dial.uclouvain.be/memoire/ucl/object/thesis:12934
[5] Nesterov Yu., “Subgradient methods for huge-scale optimization problems”, Math. Prog., 146:1–2 (2015), 275–297 | DOI | MR
[6] Stonyakin F.S., Alkusa M.S., Stepanov A.N., Barinov M.A., “Adaptivnye algoritmy zerkalnogo spuska v zadachakh vypuklogo programmirovaniya s lipshitsevymi ogranichenyami”, Tr. In-ta matematiki i mekhaniki UrO RAN, 24:2 (2018), 266–279 | DOI | MR
[7] Stonyakin F.S., Stepanov A.N., Gasnikov A.V., Titov A.A., “Mirror descent for constrained optimization problems with large subgradient values of functional constraints”, Computer Research and Modeling, 12:2 (2020), 301–317 | DOI | MR
[8] Lin Q., Ma R., Nadarajah S., Soheili N., A Parameter-free and projection-free restarting level set method for adaptive constrained conver optimization under the error bound condition, 2022, 29 pp., arXiv: 2010.15267
[9] Polyak B.T., Vvedenie v optimizatsiyu, Nauka, M., 1983, 384 pp. | MR
[10] Nesterov Yu.E., Effektivnye metody nelineinogo programmirovaniya, Radio i svyaz, M., 1989, 301 pp.
[11] Klark F., Optimizatsiya i negladkii analiz, per. s angl., ed. pod red. V. I. Blagodatskikh, Nauka, M., 1988, 280 pp. | MR
[12] Polyak B.T., “Minimizatsiya negladkikh funktsionalov”, Zhyrn. vychisl. matematiki i mat. fiz., 9:3 (1969), 509–521 | Zbl
[13] Boyd S.P., Vandenberghe L., Convex optimization, Cambridge Univ. Press, Cambridge, 2004, 716 pp. | MR | Zbl