Simple Invariant Solutions of the Dynamic Equation for a Monatomic Gas
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 29 (2023) no. 2, pp. 115-132
Voir la notice de l'article provenant de la source Math-Net.Ru
We consider a system of gas dynamics equations with the state equation of a monatomic gas. The equations admit a group of transformations with a 14-dimensional Lie algebra. We consider 4-dimensional subalgebras containing the projective operator from the optimal system of subalgebras. The invariants of the basis operators are computed. Eight simple invariant solutions of rank $0$ are obtained. Of these, four physical solutions specify a gas motion with a linear velocity field and one physical solution specifies a motion with a linear dependence of components of the velocity vector on two space coordinates. All these solutions except one have variable entropy. The motion of gas particles as a whole is constructed for the isentropic solution. The solutions obtained have a density singularity on a constant or moving plane, which is a boundary with vacuum or a wall.
Keywords:
gas dynamics equations, projective operator
Mots-clés : invariant solution.
Mots-clés : invariant solution.
@article{TIMM_2023_29_2_a9,
author = {R. F. Nikonorova},
title = {Simple {Invariant} {Solutions} of the {Dynamic} {Equation} for a {Monatomic} {Gas}},
journal = {Trudy Instituta matematiki i mehaniki},
pages = {115--132},
publisher = {mathdoc},
volume = {29},
number = {2},
year = {2023},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TIMM_2023_29_2_a9/}
}
R. F. Nikonorova. Simple Invariant Solutions of the Dynamic Equation for a Monatomic Gas. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 29 (2023) no. 2, pp. 115-132. http://geodesic.mathdoc.fr/item/TIMM_2023_29_2_a9/