Simple Invariant Solutions of the Dynamic Equation for a Monatomic Gas
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 29 (2023) no. 2, pp. 115-132 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

We consider a system of gas dynamics equations with the state equation of a monatomic gas. The equations admit a group of transformations with a 14-dimensional Lie algebra. We consider 4-dimensional subalgebras containing the projective operator from the optimal system of subalgebras. The invariants of the basis operators are computed. Eight simple invariant solutions of rank $0$ are obtained. Of these, four physical solutions specify a gas motion with a linear velocity field and one physical solution specifies a motion with a linear dependence of components of the velocity vector on two space coordinates. All these solutions except one have variable entropy. The motion of gas particles as a whole is constructed for the isentropic solution. The solutions obtained have a density singularity on a constant or moving plane, which is a boundary with vacuum or a wall.
Keywords: gas dynamics equations, projective operator
Mots-clés : invariant solution.
@article{TIMM_2023_29_2_a9,
     author = {R. F. Nikonorova},
     title = {Simple {Invariant} {Solutions} of the {Dynamic} {Equation} for a {Monatomic} {Gas}},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {115--132},
     year = {2023},
     volume = {29},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2023_29_2_a9/}
}
TY  - JOUR
AU  - R. F. Nikonorova
TI  - Simple Invariant Solutions of the Dynamic Equation for a Monatomic Gas
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2023
SP  - 115
EP  - 132
VL  - 29
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TIMM_2023_29_2_a9/
LA  - ru
ID  - TIMM_2023_29_2_a9
ER  - 
%0 Journal Article
%A R. F. Nikonorova
%T Simple Invariant Solutions of the Dynamic Equation for a Monatomic Gas
%J Trudy Instituta matematiki i mehaniki
%D 2023
%P 115-132
%V 29
%N 2
%U http://geodesic.mathdoc.fr/item/TIMM_2023_29_2_a9/
%G ru
%F TIMM_2023_29_2_a9
R. F. Nikonorova. Simple Invariant Solutions of the Dynamic Equation for a Monatomic Gas. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 29 (2023) no. 2, pp. 115-132. http://geodesic.mathdoc.fr/item/TIMM_2023_29_2_a9/

[1] Ovsyannikov L.V., “O “prostykh” resheniyakh uravnenii dinamiki politropnogo gaza”, Prikl. mekhanika i tekhnicheskaya fizika, 40:2 (1999), 5–12 | MR | Zbl

[2] Panov A.V., “Rank 0 invariant solutions of dynamics of two-phase medium”, Internat. Conf. Anal. Appl. Math. (ICAAM 2016), AIP Conf. Proc., 1759, no. 1, 2016, 020083, 5 pp. | DOI

[3] Pavlenko A.S., “Simmetrii i resheniya uravnenii dvumernykh dvizhenii politropnogo gaza”, Sib. elektron. mat. izv., 2 (2005), 291–307 | Zbl

[4] Golovin S.V., Podmodeli dinamiki politropnogo gaza, dis. \ldots kand. fiz.-mat. nauk, Novosib. ord. trud. kras. znam. gos. un-t, Novosibirsk, 2000, 116 pp.

[5] Cherevko A.A., Optimalnaya sistema podalgebr dlya algebry Li operatorov, dopuskaemykh sistemoi uravnenii gazovoi dinamiki s uravneniem sostoyaniya $p=f(S)\,\rho^{5/3}$, Preprint # 4-96, SO RAN, In-t gidrodinamiki, Novosibirsk, 1996, 39 pp.

[6] Shayakhmetova R.F., “Vlozhennye invariantnye podmodeli dvizheniya odnoatomnogo gaza”, Sib. elektron. mat. izv., 11 (2014), 605–625 | MR | Zbl

[7] Shayakhmetova R.F., “Invariantnye podmodeli ranga 3 i ranga 2 odnoatomnogo gaza s proektivnym operatorom”, Tr. In-ta mekhaniki im. R. R. Mavlyutova Ufim. nauch. tsentra RAN, 11:1 (2016), 127–135

[8] Nikonorova R.F., “Podmodeli odnoatomnogo gaza naimenshego ranga, postroennye na osnove trekhmernykh podalgebr simmetrii”, Sib. elektron. mat. izv., 15 (2018), 1216–1226 | MR | Zbl

[9] Sidorov A.F., “O dvukh klassakh reshenii uravnenii gazovoi dinamiki”, Prikl. mekhanika i tekhnicheskaya fizika, 1980, no. 5, 16–24

[10] Ovsyannikov L.V., “Novoe reshenie uravnenii gidrodinamiki”, Dokl. AN SSSR, 111:1 (1956), 47–49 | Zbl

[11] Ovsyannikov L.V., “Programma PODMODELI. Gazovaya dinamika”, Prikl. matematika i mekhanika, 58:4 (1994), 30–55 | MR | Zbl

[12] Khabirov S.V., “Ierarkhiya podmodelei differentsialnykh uravnenii”, Sib. mat. zhurn., 54:6 (2013), 1396–1406 | MR | Zbl

[13] Siraeva D.T., Yulmukhametova Yu.V., “Preobrazovaniya uravnenii gazovoi dinamiki i bazisnykh operatorov dopuskaemoi 11-mernoi algebry Li”, Mnogofaznye sistemy, 15:3-4 (2020), 217–222 | DOI

[14] Ovsyannikov L.V., Chupakhin A.P., “Regulyarnye chastichno invariantnye podmodeli uravnenii gazovoi dinamiki”, Prikl. matematika i mekhanika, 60:6 (1996), 990–999 | MR | Zbl

[15] Khabirov S.V., “Prostye chastichno invariantnye resheniya”, Ufim. mat. zhurn., 11:1 (2019), 87–98 | MR | Zbl

[16] Pavlenko A.S., “Proektivnaya podmodel vikhrya Ovsyannikova”, Prikl. mekhanika i tekhnicheskaya fizika, 46:4 (2005), 3–16 | MR | Zbl

[17] Shayakhmetova R.F., “Zavikhrennyi razlet odnoatomnogo gaza”, Tr. In-ta mekhaniki im. R. R. Mavlyutova Ufim. nauch. tsentra RAN, 2014, no. 10, 110–113

[18] Fellner K., Schmeiser C., “Classification of equilibrium solutions of the cometary flow equation and explicit solutions of the Euler equations for monatomic ideal gases”, J. Stat. Phys., 129 (2007), 493–507 | DOI | MR | Zbl