On Hilbert spaces of sequences formed by values of functions from the Bargmann–Fock space
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 29 (2023) no. 2, pp. 104-114 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

We study Hilbert spaces of sequences formed by values of functions from the Bargmann–Fock space $F$, which consists of entire functions whose square modulus is summable on the plane ${\mathbb C}$ with measure $d\sigma(z):= (1/\pi)e^{-|z|^2}\, dv(z)$, where $dv(z)$ is an area element: \begin{equation*} \|f\|^2_F=\int_{\mathbb C}|f(z)|^2\, d\sigma(z)\infty \quad \forall f\in F. \end{equation*} The space $\overline F$ consists of complex conjugates of functions from $F$, and $\|\overline f\|_{\overline F}=\|f\|_{F}\,\forall f\in F$. We consider classes of countable sets $\Omega_0\subset {\mathbb C}$ of the form $$ \Omega_0\stackrel{\mathrm{def}}{=}\{z\in{\mathbb C}\colon \ z=a\cdot n+ib\cdot m,\ a\cdot b=\pi\ \forall n,m\in {\mathbb Z}\}, $$ where $a$ and $b$ are some fixed (depending only on the set $\Omega_0$) nonzero real numbers. The sets $\Omega_0$ are called von Neumann lattices. For a real number $k>1$, we form the set $\Omega_0^k\stackrel{\mathrm{def}}{=}k\cdot\Omega_0$. We establish that the space of sequences of complex numbers $V_k$ formed by the traces of functions from some subspace $F^k$ of the space $F$ on the set $\Omega_0^k$ is equivalent to the space of sequences of complex numbers $U_k$ formed by the traces of functions from a subspace $\overline F^k$ of the space $\overline F$ on the set $\Omega_0^k$. The spaces $\overline F^k$ and $\overline F$ consist of complex conjugates of the functions from the spaces $F^k$ and $F$, respectively. Moreover, the norms in the spaces $V_k$ and $U_k$ are induced by the norms of the spaces $F^k$ and $\overline F^k$. To derive the main results of the paper, we use the result of K. Seip on discrete sampling sets of the Bargmann–Fock space. The results of the authors related to the questions of the coincidence or equivalence of Hilbert spaces with a reproducing kernel are applied. Here the notion of consistency of two complete systems of functions, introduced earlier by the authors, plays an important role. The paper presents counterexamples. We construct nonequivalent Hilbert spaces of complex numbers $V$ and $U$ that are the traces on some discrete subset of the complex plane of functions from $F$ that are not equivalent.
Keywords: decomposition systems similar to orthogonal ones, Hilbert space with reproducing kernel, problem of describing a dual space, Bargmann–Fock space, exponential frame, von Neumann lattice.
@article{TIMM_2023_29_2_a8,
     author = {V. V. Napalkov and A. A. Nuyatov},
     title = {On {Hilbert} spaces of sequences formed by values of functions from the {Bargmann{\textendash}Fock} space},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {104--114},
     year = {2023},
     volume = {29},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2023_29_2_a8/}
}
TY  - JOUR
AU  - V. V. Napalkov
AU  - A. A. Nuyatov
TI  - On Hilbert spaces of sequences formed by values of functions from the Bargmann–Fock space
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2023
SP  - 104
EP  - 114
VL  - 29
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TIMM_2023_29_2_a8/
LA  - ru
ID  - TIMM_2023_29_2_a8
ER  - 
%0 Journal Article
%A V. V. Napalkov
%A A. A. Nuyatov
%T On Hilbert spaces of sequences formed by values of functions from the Bargmann–Fock space
%J Trudy Instituta matematiki i mehaniki
%D 2023
%P 104-114
%V 29
%N 2
%U http://geodesic.mathdoc.fr/item/TIMM_2023_29_2_a8/
%G ru
%F TIMM_2023_29_2_a8
V. V. Napalkov; A. A. Nuyatov. On Hilbert spaces of sequences formed by values of functions from the Bargmann–Fock space. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 29 (2023) no. 2, pp. 104-114. http://geodesic.mathdoc.fr/item/TIMM_2023_29_2_a8/

[1] Aronszajn N., “Theory of reproducing kernels”, Trans. Amer. Math. Soc., 68:3 (1950), 337–404 | DOI | MR | Zbl

[2] Bargmann V., “On a Hilbert space of analytic functions and an associated integral transform”, Comm. Pure Appl. Math., 14:3 (1961), 187–214 | DOI | MR | Zbl

[3] K. Seip, R. Wallsten, “Density theorems for sampling and interpolation in the Bargmann-Fock space II”, J. reine angew. Math., 429 (1992), 107–113 | DOI | MR | Zbl

[4] K. Seip, “Density theorems for sampling and interpolation in the Bargmann-Fock space I”, J. reine angew. Math., 429 (1992), 92–106 | DOI | MR

[5] Lukashenko T.P., “O svoistvakh sistem razlozheniya podobnykh ortogonalnym”, Izv. RAN. Cer. matematicheskaya, 62:5 (1998), 187–206 | DOI | MR | Zbl

[6] Riss F., Sekefalvi-Nad B., Lektsii po funktsionalnomu analizu, Mir, M., 1979, 588 pp.

[7] Napalkov B.B. (ml.), “Ob ortopodobnykh sistemakh razlozheniya v prostranstve analiticheskikh funktsii i zadache opisaniya sopryazhennogo prostranstva”, Ufim. mat. zhurn., 3:1 (2011), 31–42 | MR | Zbl

[8] Danford N., Shvarts Dzh., Lineinye operatory. Obschaya teoriya, IL, M., 1962, 896 pp.

[9] V. V. Napalkov (ml.), “Ortopodobnye sistemy razlozheniya v prostranstvakh s vosproizvodyaschim yadrom”, Ufim. mat. zhurn., 4:5 (2013), 91–104

[10] Napalkov V. V., Napalkov V. V. (ml.), “K voprosu o sovpadenii gilbertovykh prostranstv s vosproizvodyaschimi yadrami, svyazannykh spetsialnym preobrazovaniem”, Tr. In-ta matematiki i mekhaniki UrO RAN, 25:2 (2019), 149–159 | DOI | MR

[11] Kantorovich L.V., Akilov G.P., Funktsionalnyi analiz, Nauka, M., 1984, 752 pp. | MR

[12] Daubechies I. and Grossmann A., “Frames in the Bargmann space of entire functions”, Comm. Pure Appl. Math., 41 (1988), 151–164 | DOI | MR | Zbl

[13] Lyubarskii Y.I., “Frames in the Bargmann space of entire functions”, Entire and Subharmonic Functions, Adv. Sov. Math., 11, ed. Boris Ya Levin, Amer. Math. Soc., Providence, 1992, 167–180 | DOI | MR

[14] Napalkov V.V., Napalkov V.V. (ml.), “Ob izomorfizme gilbertovykh prostranstv s vosproizvodyaschim yadrom”, Dokl. AN, 474:6 (2017), 665–667 | DOI | Zbl

[15] Newman D.J., Shapiro H.S., “Certain Hilbert spaces of entire functions”, Bull. Amer. Math. Soc., 72:6 (1966), 971–977 | DOI | MR | Zbl