Assimilation of Boundary Data for Reconstructing the Absorption Coefficient in a Model of Stationary Reaction–Convection–Diffusion
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 29 (2023) no. 2, pp. 87-103 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

Direct and inverse problems for a model of stationary reaction–convection–diffusion are studied. The direct problem is to find a solution to the corresponding boundary value problem for given parameters of the model. Solvability conditions are specified for the direct problem, a priori estimates of the solution are presented, and the continuous dependence of the solution to the direct problem on a number of parameters is established. The inverse problem consists in finding the a priori unknown absorption coefficient of the medium, which characterizes the decay of some substance (or the heat sink) in a chemical process. The results of measuring the concentration of a substance (or its temperature) on an available part of the boundary of the domain filled with the corresponding medium (the domain of change of the spatial variable) are used as additional information for solving the inverse problem. It is proved that the inverse problem is ill-posed. Examples are given demonstrating that the inverse problem is unstable with respect to changes of the measured value and may have several solutions. To solve the inverse problem, a variational method based on the minimization of some appropriate residual functional (a target functional) is suggested. The extremal properties of the problem of minimizing the residual functional are studied. An explicit analytical formula is found for calculating the gradient of the residual functional, and the corresponding adjoint system and optimality system are written. Several stable iterative methods for minimizing the residual functional are specified. Results of numerical simulation of the solution to the inverse problem are presented.
Mots-clés : reaction–convection–diffusion equation
Keywords: direct problem, inverse problem, residual functional, functional gradient, adjoint system, variational method, gradient minimization methods.
@article{TIMM_2023_29_2_a7,
     author = {A. I. Korotkii and I. A. Tsepelev},
     title = {Assimilation of {Boundary} {Data} for {Reconstructing} the {Absorption} {Coefficient} in a {Model} of {Stationary} {Reaction{\textendash}Convection{\textendash}Diffusion}},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {87--103},
     year = {2023},
     volume = {29},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2023_29_2_a7/}
}
TY  - JOUR
AU  - A. I. Korotkii
AU  - I. A. Tsepelev
TI  - Assimilation of Boundary Data for Reconstructing the Absorption Coefficient in a Model of Stationary Reaction–Convection–Diffusion
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2023
SP  - 87
EP  - 103
VL  - 29
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TIMM_2023_29_2_a7/
LA  - ru
ID  - TIMM_2023_29_2_a7
ER  - 
%0 Journal Article
%A A. I. Korotkii
%A I. A. Tsepelev
%T Assimilation of Boundary Data for Reconstructing the Absorption Coefficient in a Model of Stationary Reaction–Convection–Diffusion
%J Trudy Instituta matematiki i mehaniki
%D 2023
%P 87-103
%V 29
%N 2
%U http://geodesic.mathdoc.fr/item/TIMM_2023_29_2_a7/
%G ru
%F TIMM_2023_29_2_a7
A. I. Korotkii; I. A. Tsepelev. Assimilation of Boundary Data for Reconstructing the Absorption Coefficient in a Model of Stationary Reaction–Convection–Diffusion. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 29 (2023) no. 2, pp. 87-103. http://geodesic.mathdoc.fr/item/TIMM_2023_29_2_a7/

[1] Marchuk G.I., Matematicheskoe modelirovanie v probleme okruzhayuschei sredy, Nauka, M., 1982, 319 pp. | MR

[2] Moiseev N.N., Chelovek i noosfera, Molodaya gvardiya, M., 1990, 352 pp.

[3] Tikhonov A.N., Arsenin V.Ya., Metody resheniya nekorrektnykh zadach, Nauka, M., 1979, 288 pp.

[4] Ivanov V.K., Vasin V.K., Tanana V.P., Teoriya lineinykh nekorrektnykh zadach i ikh prilozheniya, Nauka, M., 1978, 206 pp.

[5] Kabanikhin S.I., Obratnye i nekorrektnye zadachi, Sib. nauch. izd-vo, Novosibirsk, 2009, 457 pp.

[6] Korotkii A.I., Kovtunov D.A., “Rekonstruktsiya granichnykh rezhimov v obratnoi zadache teplovoi konvektsii vysokovyazkoi zhidkosti”, Tr. In-ta matematiki i mekhaniki UrO RAN, 12:2 (2006), 88–97

[7] Korotkii A.I., Tsepelev I.A., Ismail-Zade A.T., “Assimilyatsiya dannykh o svobodnoi poverkhnosti potoka zhidkosti dlya nakhozhdeniya ee vyazkosti”, Tr. In-ta matematiki i mekhaniki UrO RAN, 28:2 (2022), 143–157 | DOI

[8] Chandrasekhar S., Hydrodynamic and hydromagnetic stability, Clarendon Press, Oxford, 1961, 652 pp. | MR | Zbl

[9] Landau L.D., Lifshits E.M., Gidrodinamika, Nauka, M., 1986, 736 pp.

[10] Ladyzhenskaya O.A., Matematicheskie voprosy dinamiki vyazkoi neszhimaemoi zhidkosti, Gos. izd-vo fiz.-mat. lit-ry, M., 1961, 204 pp. | MR

[11] Alekseev G.V., Tereshko D.A., Analiz i optimizatsiya v gidrodinamike vyazkoi zhidkosti, Dalnauka, Vladivostok, 2008, 365 pp.

[12] Ladyzhenskaya O.A., Uraltseva N.N., Lineinye i kvazilineinye uravneniya ellipticheskogo tipa, Nauka, M., 1973, 576 pp. | MR

[13] Mikhailov V.P., Differentsialnye uravneniya v chastnykh proizvodnykh, Nauka, M., 1976, 392 pp.

[14] Adams R.A., Sobolev spaces, Acad. Press, NY, 1975, 268 pp. | MR | Zbl

[15] Ladyzhenskaya O.A., Kraevye zadachi matematicheskoi fiziki, Nauka, M., 1973, 408 pp. | MR

[16] Sobolev S.L., Nekotorye primeneniya funktsionalnogo analiza v matematicheskoi fizike, Nauka, M., 1988, 336 pp. | MR

[17] Rektoris K., Variatsionnye metody v matematicheskoi fizike i tekhnike, Mir, M., 1985, 590 pp. | MR

[18] Smirnov V.I., Kurs vysshei matematiki, v. 5, Fizmatlit, M., 1959, 657 pp. | MR

[19] Vasilev F.P., Metody optimizatsii, Faktorial Press, M., 2002, 824 pp.

[20] Nocedal J., Wright S.J., Numerical optimization, Springer, NY, 1999, 664 pp. | MR | Zbl

[21] Kaltenbacher B., Neubauer A., Scherzer O., Iterative regularization methods for nonlinear Ill-posed problems, Radon Ser. Comp. Appl. Math., 6, Walter de Gruyter, Berlin, NY, 2008, 202 pp. | MR

[22] Wolfe P., “Convergence conditions for ascent methods II: Some corrections”, SIAM Review, 13 (1971), 85–188 | DOI | MR