The Problem of Diffusion Wave Initiation for a Nonlinear Second-Order Parabolic System
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 29 (2023) no. 2, pp. 67-86
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

The study of nonlinear singular parabolic equations occupies a key place in the scientific school of A. F. Sidorov. In particular, the problem on initiating a heat wave has been studied since the 1980s. The present study aims to extend the results of Sidorov and his followers, including the authors, to the case of systems of the corresponding type. We find that the heat (diffusion) wave for the system considered has a more complex (three-part) structure, which follows from the fact that the zero fronts are different for the unknown functions. A theorem on the existence and uniqueness of a piecewise analytical solution, which has the form of special series, is proved. We find an exact solution of the desired type, the construction of which is reduced to the integration of ordinary differential equations (ODEs). We managed to integrate the ODEs by quadratures. In addition, we propose an algorithm based on the collocation method, which allows us to effectively construct an approximate solution on a given time interval. Illustrative numerical calculations are performed. Since we have not managed to prove the convergence in this case (this is far from always possible for nonlinear singular equations and systems), exact solutions, both obtained in this paper and previously known, have been used to verify the calculation results.
Keywords: nonlinear parabolic system, singularity, existence theorem, special series, collocation method, computational experiment.
Mots-clés : exact solution
@article{TIMM_2023_29_2_a6,
     author = {A. L. Kazakov and P. A. Kuznetsov and L. F. Spevak},
     title = {The {Problem} of {Diffusion} {Wave} {Initiation} for a {Nonlinear} {Second-Order} {Parabolic} {System}},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {67--86},
     year = {2023},
     volume = {29},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2023_29_2_a6/}
}
TY  - JOUR
AU  - A. L. Kazakov
AU  - P. A. Kuznetsov
AU  - L. F. Spevak
TI  - The Problem of Diffusion Wave Initiation for a Nonlinear Second-Order Parabolic System
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2023
SP  - 67
EP  - 86
VL  - 29
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TIMM_2023_29_2_a6/
LA  - ru
ID  - TIMM_2023_29_2_a6
ER  - 
%0 Journal Article
%A A. L. Kazakov
%A P. A. Kuznetsov
%A L. F. Spevak
%T The Problem of Diffusion Wave Initiation for a Nonlinear Second-Order Parabolic System
%J Trudy Instituta matematiki i mehaniki
%D 2023
%P 67-86
%V 29
%N 2
%U http://geodesic.mathdoc.fr/item/TIMM_2023_29_2_a6/
%G ru
%F TIMM_2023_29_2_a6
A. L. Kazakov; P. A. Kuznetsov; L. F. Spevak. The Problem of Diffusion Wave Initiation for a Nonlinear Second-Order Parabolic System. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 29 (2023) no. 2, pp. 67-86. http://geodesic.mathdoc.fr/item/TIMM_2023_29_2_a6/

[1] Sidorov A.F., Izbrannye trudy: Matematika. Mekhanika, Fizmatlit, M., 2001, 576 pp. | MR

[2] Vasin V.V., Sidorov A.F., “O nekotorykh metodakh priblizhennogo resheniya differentsialnykh i integralnykh uravnenii”, Izv. vuzov. Matematika, 1983, no. 7, 13–27 | Zbl

[3] Sidorov A.F., “O nekotorykh klassakh reshenii uravneniya nestatsionarnoi filtratsii”, cb. nauch. tr., Chislennye metody mekhaniki sploshnoi sredy, 15, no. 2, ITPM SO AN SSSR, Novosibirsk, 1984, 121–133 | MR

[4] Sidorov A.F., “Analiticheskie predstavleniya reshenii nelineinykh parabolicheskikh uravnenii tipa nestatsionarnoi filtratsii”, Dokl. AN SSSR, 280:1 (1985), 47–51 | MR | Zbl

[5] Osipov Yu.S., Berdyshev V.I., Ilin A.M., Korotkii A.I., Samofalov V.V., Titov S.S., Ulyanov O.N., Khairullina O.B., “Anatolii Fedorovich Sidorov (1933–1999)”, Tr. In-ta matematiki i mekhaniki UrO RAN, 9:2 (2003), 3–9 | MR

[6] Sidorov A.F., “O nekotorykh analiticheskikh predstavleniyakh reshenii nelineinogo uravneniya nestatsionarnoi filtratsii”, Chislennye metody resheniya zadach filtratsii mnogofaznoi neszhimaemoi zhidkosti, cb. nauch. tr., ITPM SO AN SSSR, Novosibirsk, 1987, 247–257

[7] Bautin S.P., Analiticheskaya teplovaya volna, Fizmatlit, M., 2003, 88 pp.

[8] Kovrizhnykh O.O., “O postroenii asimptoticheskogo resheniya nelineinogo vyrozhdayuschegosya parabolicheskogo uravneniya”, Zhurn. vychisl. matematiki i mat. fiziki, 43:10 (2003), 1487–1493 | MR | Zbl

[9] Vaganova N.A., “Postroenie novykh klassov reshenii nelineinogo uravneniya filtratsii s pomoschyu spetsialnykh soglasovannykh ryadov”, Tr. In-ta matematiki i mekhaniki UrO RAN, 9:2 (2003), 10–20 | MR

[10] Filimonov M.Yu., “Representation of solutions of boundary value problems for nonlinear evolution equations by special series with recurrently calculated coefficients”, Journal of Physics: Conference Series, 1268 (2019), 012071 | DOI

[11] Kazakov A.L., Lempert A.A., “O suschestvovanii i edinstvennosti resheniya kraevoi zadachi dlya parabolicheskogo uravneniya nestatsionarnoi filtratsii”, Prikladnaya mekhanika i tekhnicheskaya fizika, 54:2 (2013), 97–105 | MR | Zbl

[12] Kazakov A.L., Kuznetsov P.A., “Ob analiticheskikh resheniyakh odnoi spetsialnoi kraevoi zadachi dlya nelineinogo uravneniya teploprovodnosti v polyarnykh koordinatakh”, Sib. zhurn. industr. matematiki, 21:2 (2018), 56–65 | DOI | Zbl

[13] Kazakov A.L., Nefedova O.A., Spevak L.F., “Reshenie zadach ob initsiirovanii teplovoi volny dlya nelineinogo uravneniya teploprovodnosti metodom granichnykh elementov”, Zhurn. vychisl. matematiki i mat. fiziki, 59:6 (2019), 1047–1062 | DOI | Zbl

[14] Kazakov A.L., “Primenenie kharakteristicheskikh ryadov dlya postroeniya reshenii nelineinykh parabolicheskikh uravnenii i sistem s vyrozhdeniem”, Tr. In-ta matematiki i mekhaniki UrO RAN, 18:2 (2012), 114–122

[15] Kazakov A.L., Kuznetsov P.A., Lempert A.A., “Analytical solutions to the singular problem for a system of nonlinear parabolic equations of the reaction-diffusion type”, Symmetry, 12:6 (2020), 999 | DOI | MR

[16] Kazakov A.L., Spevak L.F., “Tochnye i priblizhennye resheniya vyrozhdayuscheisya sistemy reaktsiya-diffuziya”, Prikladnaya mekhanika i tekhnicheskaya fizika, 62:4 (2021), 169–180 | DOI | Zbl

[17] Kazakov A.L., Kuznetsov P.A., Spevak L.F., “Postroenie reshenii kraevoi zadachi s vyrozhdeniem dlya nelineinoi parabolicheskoi sistemy”, Sib. zhurn. industr. matematiki, 24:4 (2021), 64–78 | DOI

[18] Kazakov A.L., Spevak L.F., “Resheniya nelineinoi vyrozhdayuscheisya sistemy reaktsiya-diffuziya tipa diffuzionnykh voln s dvumya frontami”, Prikladnaya mekhanika i tekhnicheskaya fizika, 63:6(376) (2022), 104–115 | DOI

[19] Kosov A.A., Semenov E.I., “Distributed model of space exploration by two types of interacting robots and its exact solutions”, Journal of Physics: Conference Series, 1847 (2021), 012007 | DOI

[20] Ladyzhenskaya O.A., Solonnikov V.A., Uraltseva N.N., Lineinye i kvazilineinye uravneniya parabolicheskogo tipa, Nauka, M., 1967, 738 pp. | MR

[21] Grindrod P., Patterns and waves: theory and applications of reaction-diffusion equations, Clarendon Press, NY, 1991, 256 pp. | MR | Zbl

[22] Samarskii A.A., Galaktionov V.A., Kurdyumov S.P., Mikhailov A.P., Rezhimy s obostreniem v zadachakh dlya kvazilineinykh parabolicheskikh uravnenii, Nauka, M., 1987, 480 pp.

[23] Vazquez J., The porous medium equation: mathematical theory, Clarendon Press, Oxford, 2007, 624 pp. | DOI | MR

[24] Bekezhanova V.B., Stepanova I.V., “Evaporation convection in two-layers binary mixtures: equations, structure of solution, study of gravity and thermal diffusion effects on the motion”, Appl. Math. Comput., 414 (2022), 126424 | DOI | MR

[25] Cantrell R.S., Cosner C., Spatial ecology via reaction-diffusion equations, Wiley, Chichester, 2003, 432 pp. | MR | Zbl

[26] DiBenedetto E., Degenerate parabolic equations, Springer-Verlag, NY, 1993, 388 pp. | DOI | MR | Zbl

[27] Oleinik O.A., Kalashnikov A.S., Chzhou Yui-Lin, “Zadacha Koshi i kraevye zadachi dlya uravnenii tipa nestatsionarnoi filtratsii”, Izv. AN SSSR. Ser. matematicheskaya, 22:5 (1958), 667–704 | Zbl

[28] Stepanova E.V., Shishkov A.E., “Nachalnaya evolyutsiya nositelei reshenii kvazilineinykh parabolicheskikh uravnenii s vyrozhdayuschimsya absorbtsionnym potentsialom”, Mat. sbornik, 204:3 (2013), 79–106 | DOI | MR | Zbl

[29] Antontsev S.N., Shmarev S.I., Evolution PDEs with nonstandard growth conditions: Existence, uniqueness, localization, blow-up, Atlantis Press, Paris, 2015, 409 pp. | DOI | MR | Zbl

[30] Bautin S.P., Kazakov A.L., Obobschennaya zadacha Koshi i ee prilozheniya, Nauka, Novosibirsk, 2006, 399 pp.

[31] Godunov S.K., Ryabenkii V.S., Raznostnye skhemy(vvedenie v teoriyu), Nauka, M., 1977, 440 pp. | MR

[32] Rubina L.I., “O kharakteristikakh i resheniyakh odnomernogo nestatsionarnogo uravneniya filtratsii”, Prikladnaya matematika i mekhanika, 69:5 (2005), 829–836 | MR | Zbl

[33] Rubina L.I., Ulyanov O.N., “Ob odnom metode resheniya uravneniya nelineinoi teploprovodnosti”, Sib. mat. zhurn., 53:5 (2012), 1091–1101 | MR | Zbl

[34] Polyanin A.D., Zaitsev V.F., Zhurov A.I., Metody resheniya nelineinykh uravnenii matematicheskoi fiziki i mekhaniki, Fizmatlit, M., 2005, 256 pp.

[35] Sidorov A.F., “Nekotorye novye analiticheskie metody issledovaniya nelineinykh volnovykh protsessov v gazovoi dinamike”, Fundament. issledovaniya nadezhnosti i kachestva mashin, 1990, 48–37

[36] Brebbia C.A., Telles J.C.F., Wrobel L.C., Boundary element techniques, Springer-Verlag, Berlin, 1984, 464 pp. | MR | Zbl

[37] Banerjee P.K., Butterfield R., Boundary element methods in engineering science, McGraw-Hill Book Company, London, 1981, 452 pp. | MR | Zbl

[38] Nardini N., Brebbia C.A., “A new approach to free vibration analysis using boundary elements”, Appl. Math. Modelling, 7 (1983), 157–162 | DOI | MR | Zbl

[39] Wrobel L.C., Brebbia C.A., Nardini D., “The dual reciprocity boundary element formulation for transient heat conduction”, Finite elements in water resources VI, Springer-Verlag, Berlin, 1986, 801–811 | MR

[40] Chen C.S., Chen W., Fu Z.J., Recent advances in radial basis function collocation methods, Springer, Berlin; Heidelberg, 2013, 165 pp. | DOI | MR

[41] Buhmann M.D., Radial basis functions, Cambridge University Press, Cambridge, 2003, 259 pp. | DOI | MR | Zbl

[42] Fornberg B., Flyer N., “Solving PDEs with radial basis functions”, Acta Numerica, 24 (2015), 215–258 | DOI | MR | Zbl

[43] Golberg M.A., Chen C.S., Bowman H., “Some recent results and proposals for the use of radial basis functions in the BEM”, Engineering Analysis with Boundary Elements, 23 (1999), 285–296 | DOI | Zbl