On Intersections of Nilpotent Subgroups in Finite Groups with Simple Socle from the “Atlas of Finite Groups”
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 29 (2023) no. 2, pp. 54-66 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

Earlier, the author described up to conjugacy all pairs $(A,B)$ of nilpotent subgroups of a finite group $G$ with socle $L_2(q)$ for which $A\cap B^g\ne 1$ for any element of $G$. A similar description was obtained by the author later for primary subgroups $A$ and $B$ of a finite group $G$ with socle $L_n(2^m)$. In this paper, we describe up to conjugacy all pairs $(A,B)$ of nilpotent subgroups of a finite group $G$ with simple socle from the “Atlas of Finite Groups” for which $A\cap B^g\ne 1$ for any element $g$ of $G$. The results obtained in the considered cases confirm the hypothesis (Problem 15.40 from the “Kourovka Notebook”) that a finite simple nonabelian group $G$ for any nilpotent subgroups $N$ contains an element $g$ such that $N\cap N^g=1$.
Keywords: finite group, nilpotent subgroup, intersection of subgroups, Fitting subgroup.
@article{TIMM_2023_29_2_a5,
     author = {V. I. Zenkov},
     title = {On {Intersections} of {Nilpotent} {Subgroups} in {Finite} {Groups} with {Simple} {Socle} from the {{\textquotedblleft}Atlas} of {Finite} {Groups{\textquotedblright}}},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {54--66},
     year = {2023},
     volume = {29},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2023_29_2_a5/}
}
TY  - JOUR
AU  - V. I. Zenkov
TI  - On Intersections of Nilpotent Subgroups in Finite Groups with Simple Socle from the “Atlas of Finite Groups”
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2023
SP  - 54
EP  - 66
VL  - 29
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TIMM_2023_29_2_a5/
LA  - ru
ID  - TIMM_2023_29_2_a5
ER  - 
%0 Journal Article
%A V. I. Zenkov
%T On Intersections of Nilpotent Subgroups in Finite Groups with Simple Socle from the “Atlas of Finite Groups”
%J Trudy Instituta matematiki i mehaniki
%D 2023
%P 54-66
%V 29
%N 2
%U http://geodesic.mathdoc.fr/item/TIMM_2023_29_2_a5/
%G ru
%F TIMM_2023_29_2_a5
V. I. Zenkov. On Intersections of Nilpotent Subgroups in Finite Groups with Simple Socle from the “Atlas of Finite Groups”. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 29 (2023) no. 2, pp. 54-66. http://geodesic.mathdoc.fr/item/TIMM_2023_29_2_a5/

[1] Isaacs I.M., Finite group theory, AMS, Providence, RI, 2008, 350 pp. | MR | Zbl

[2] Brodkey J.S., “A note on finite groups with on abelian Sylow groups”, Proc. Amer. Math. Soc., 14 (1963), 132–133 | DOI | MR | Zbl

[3] Laffey T.J., “Disjoint conjugates of cyclic subgroups of finite groups”, Proc. Edinburgh Math. Soc., 20 (1976-77), 229–232 | DOI | MR

[4] Dempwolff U., Wong S.K., “On cyclic subgroups of finite groups”, Proc. Edinburgh Math. Soc., 25:1 (1982), 19–20 | DOI | MR | Zbl

[5] Burnside W., “On groups of order $p^a q^\beta$”, Proc. London Math. Soc., 2:1 (1904), 388–392 | DOI | MR

[6] Burnside W., “On groups of order $p^a q^\beta$ (Second paper)”, Proc. London Math. Soc., 2:2 (1905), 432–437 | DOI | MR

[7] Ito N., “Über den kleinsten p-Durchschnitt auflösbarer Gruppen”, Arch. Math., 9:1-2 (1958), 27–32 | DOI | MR | Zbl

[8] Mazurov V.D., Zenkov V.I., “O peresechenii silovskikh podgrupp v konechnykh gruppakh”, Algebra i logika, 35:4 (1996), 424–432 | MR | Zbl

[9] Zenkov V.I., “Peresecheniya nilpotentnykh podgrupp v konechnykh gruppakh”, Fund. i prikl. matematika, 2:1 (1996), 1–92 | MR | Zbl

[10] Kabanov V.V., Makhnev A.A., Starostin A.I., “Konechnye gruppy s normalnymi peresecheniyami silovskikh 2-podgrupp”, Algebra i logika, 15:6 (1976), 655–659 | MR | Zbl

[11] Herzog M., “On 2-Sylow intersections”, Isr. J. Math., 11:3 (1972), 325–327 | DOI | MR

[12] Bialostocki N., “On products of two nilpotent subgroups of a finite groups”, Isr. J Math., 20:2 (1975), 178–188 | DOI | MR | Zbl

[13] Kourovskaya tetrad. Nereshennye zadachi teorii grupp, Izd. 17-e, In-t matematiki SO RAN, Novosibirsk, 2010, 201 pp.

[14] Gorenstein D., Konechnye prostye gruppy. Vvedenie v ikh klassifikatsiyu, Mir, M., 1985, 352 pp.

[15] Kurmazov R.K., “O peresechenii sopryazhennykh nilpotentnykh podgrupp v gruppakh podstanovok”, Sib. mat. zhurn., 54:1 (1913), 98–104 | MR

[16] Zenkov V.I., “O peresecheniyakh nilpotentnykh podgrupp v konechnykh gruppakh s tsokolem $L_3(q)$ ili $U_3(q)$”, Tr. In-ta matematiki i mekhaniki UrO RAN, 27:1 (2021), 70–78 | DOI | MR

[17] Zenkov V.I., “O peresechenii abelevoi i nilpotentnoi podgrupp v konechnoi gruppe. II”, Mat. zametki, 105:3 (2019), 383–394 | DOI | MR | Zbl

[18] Zenkov V.I., “O peresecheniyakh dvukh nilpotentnykh podgrupp v konechnykh gruppakh s tsokolem $L_2(q)$”, Sib. mat. zhurn., 57:6 (2016), 1280–1290 | DOI | MR | Zbl

[19] Conway J. H. [et. al.], Atlas of finite group, Clarendon Press, Oxford, 1985, 252 pp. | MR

[20] Zenkov V.I., “O peresecheniyakh par primarnykh podgrupp v konechnoi gruppe s tsokolem $\Omega^+_{2n}(2^m)$”, Sib. elektron. mat. izv., 15 (2018), 728–732 | DOI | Zbl

[21] Zenkov V.I., “O peresechenii dvukh nilpotentnykh podgrupp v konechnoi gruppe s tsokolem $\Omega^+_8(2), E_6(2), E_7(2)$”, Sib. elektron. mat. izv., 14 (2017), 1424–1433 | DOI | Zbl

[22] Zenkov V.I., Nuzhin Y.N., “Intersection of primary subgroups in the group $\mathrm{Aut}(F_4(2))$”, J. Sib. Federal Univ. Math. Phys., 11:2 (2018), 171–177 | DOI | MR

[23] Zenkov V.I., “O peresecheniyakh primarnykh podgrupp v nerazreshimykh konechnykh gruppakh s tsokolem, izomorfnym $L_n(2^m)$”, Sib. mat. zhurn., 59:2 (2018), 337–344 | DOI | MR | Zbl

[24] Gorenstein D., Lyons R., Solomon R., The classification of the finite simple groups, Number 3, AMS, Providence, RI, 1998, 420 pp. | MR

[25] Zenkov V.I., “O peresechenii dvukh nilpotentnykh podgrupp v nebolshikh konechnykh gruppakh”, Sib. elektron. mat. izv., 13 (2016), 1099–1115 | DOI | Zbl

[26] Aschbacher M., Seitz G., “Involutions in Chevalley groups over fields of even order”, Nagoya Math. J., 63 (1976), 1–91 | DOI | MR | Zbl

[27] Yong Yang, “Regular orbits of nilpotent subgroups of solvable linear groups”, J. Algebra, 325:1 (2011), 56–69 | DOI | MR | Zbl

[28] Baer R., “Engelsche Elemente Noetherscher Gruppen”, Math. Ann., 133 (1957), 256–270 | DOI | MR | Zbl

[29] Suzuki M., “Finite groups in which the centralizer of any element of order 2 is 2-closed”, Ann. Math., 82:2 (1968), 191–212 | MR

[30] Alperin J., Lyons R., “On conjugacy classes of p-elements”, J. Algebra, 19:2 (1971), 536–537 | DOI | MR | Zbl

[31] Bray J.N., Holt D.F., Roney-Dougal C.M., The maximal subgroups of the low-dimensional finite classical groups, Cambridge University Press, Cambridge, 2013, 438 pp. | DOI | MR | Zbl

[32] Kondratev A.S., “Neprivodimye podgruppy gruppy $GL(7,2)$”, Mat. zametki, 3:3 (1985), 317–321 | MR | Zbl

[33] Harada K., Yamaki H., “The irreducible subgroups of $GL(n,2)$ with $n\leq 6$”, Roy. Soc. Can. Math. Repts, 1:2 (1979), 75–78 | MR | Zbl