Asymptotics of a Solution to an Optimal Control Problem with a Terminal Convex Performance Index and a Perturbation of the Initial Data
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 29 (2023) no. 2, pp. 41-53 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

In this paper, we investigate a problem of optimal control over a finite time interval for a linear system with constant coefficients and a small parameter in the initial data in the class of piecewise continuous controls with smooth geometric constraints. We consider a terminal convex performance index. We substantiate the limit relations as the small parameter tends to zero for the optimal value of the performance index and for the vector generating the optimal control in the problem. We show that the asymptotics of the solution can be of complicated nature. In particular, it may have no expansion in the Poincaré sense in any asymptotic sequence of rational functions of the small parameter or its logarithms.
Keywords: optimal control, terminal convex performance index, asymptotic expansion, small parameter.
@article{TIMM_2023_29_2_a4,
     author = {A. R. Danilin and O. O. Kovrizhnykh},
     title = {Asymptotics of a {Solution} to an {Optimal} {Control} {Problem} with a {Terminal} {Convex} {Performance} {Index} and a {Perturbation} of the {Initial} {Data}},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {41--53},
     year = {2023},
     volume = {29},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2023_29_2_a4/}
}
TY  - JOUR
AU  - A. R. Danilin
AU  - O. O. Kovrizhnykh
TI  - Asymptotics of a Solution to an Optimal Control Problem with a Terminal Convex Performance Index and a Perturbation of the Initial Data
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2023
SP  - 41
EP  - 53
VL  - 29
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TIMM_2023_29_2_a4/
LA  - ru
ID  - TIMM_2023_29_2_a4
ER  - 
%0 Journal Article
%A A. R. Danilin
%A O. O. Kovrizhnykh
%T Asymptotics of a Solution to an Optimal Control Problem with a Terminal Convex Performance Index and a Perturbation of the Initial Data
%J Trudy Instituta matematiki i mehaniki
%D 2023
%P 41-53
%V 29
%N 2
%U http://geodesic.mathdoc.fr/item/TIMM_2023_29_2_a4/
%G ru
%F TIMM_2023_29_2_a4
A. R. Danilin; O. O. Kovrizhnykh. Asymptotics of a Solution to an Optimal Control Problem with a Terminal Convex Performance Index and a Perturbation of the Initial Data. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 29 (2023) no. 2, pp. 41-53. http://geodesic.mathdoc.fr/item/TIMM_2023_29_2_a4/

[1] L.S. Pontryagin, V.G. Boltyanskii, R.V. Gamkrelidze, E.F. Mischenko, Matematicheskaya teoriya optimalnykh protsessov, Fizmatgiz, M., 1961, 391 pp. | MR

[2] Krasovskii N.N., Teoriya upravleniya dvizheniem. Lineinye sistemy, Nauka, M., 1968, 476 pp.

[3] Li E.B., Markus L., Osnovy teorii optimalnogo upravleniya, Nauka, M., 1972, 576 pp.

[4] Danilin A.R., Ilin A.M., “O strukture resheniya odnoi vozmuschennoi zadachi bystrodeistviya”, Fundament. i prikl. matematika, 4:3 (1998), 905–926 | MR | Zbl

[5] Dmitriev M.G., Kurina G.A., “Singulyarnye vozmuscheniya v zadachakh upravleniya”, Avtomatika i telemekhanika, 2006, no. 1, 3–51 | Zbl

[6] Kurina G.A., Kalashnikova M.A., “Singulyarno vozmuschennye zadachi s raznotempovymi bystrymi peremennymi”, Avtomatika i telemekhanika, 11 (2022), 3–61 | DOI | Zbl

[7] Galeev E.M., Tikhomirov V.M., Kratkii kurs teorii ekstremalnykh zadach, Izd-vo Moskov. un-ta, M., 1989, 204 pp.

[8] Danilin A.R., “Asimptotika optimalnogo znacheniya funktsionala kachestva pri bystrostabiliziruyuschemsya nepryamom upravlenii v regulyarnom sluchae”, Differents. uravneniya, 42:11 (2006), 1473–1480 | MR | Zbl

[9] Danilin A.R., “Asimptotika optimalnogo znacheniya funktsionala kachestva pri bystrostabiliziruyuschemsya nepryamom upravlenii v singulyarnom sluchae”, Zhurn. vychisl. matematiki i mat. fiziki, 46:12 (2006), 2166–2177 | MR

[10] Parysheva Yu.V., “Asimptotika resheniya lineinoi zadachi optimalnogo upravleniya v singulyarnom sluchae”, Tr. In-ta matematiki i mekhaniki UrO RAN, 17:3 (2011), 266–270

[11] Shaburov A.A., “Asimptoticheskoe razlozhenie resheniya singulyarno vozmuschennoi zadachi optimalnogo upravleniya s integralnym vypuklym kriteriem kachestva i gladkimi geometricheskimi ogranicheniyami na upravlenie”, Izv. IMI UdGU, 50 (2017), 110–120 | DOI | Zbl

[12] Shaburov A.A., “Asimptoticheskoe razlozhenie resheniya singulyarno vozmuschennoi zadachi optimalnogo upravleniya s gladkimi ogranicheniyami na upravlenie i s integralnym vypuklym kriteriem kachestva, terminalnaya chast kotorogo zavisit tolko ot medlennykh peremennykh”, Vestn. rossiiskikh un-tov. Matematika, 24:125 (2019), 119–136 | DOI

[13] Zhang Y., Naidu D.S., Cai C., Zou Y., “Singular perturbations and time scales in control theories and applications: an overview 2002–2012”, Int. J. of Information and Systems Sciences, 9:1 (2014), 1–36 | MR

[14] Hoai N.T., “Asymptotic solution of a singularly perturbed linear-quadratic problem in critical case with cheap control”, J. Optim Theory Appl., 175:2 (2017), 324–340 | DOI | MR | Zbl

[15] Nguyen T.H., “Asymptotic solution of a singularly perturbed optimal problem with integral constraint ”, J. Optim. Theory Appl., 2021, no. 190, 931–950 | DOI | MR | Zbl

[16] Danilin A.R., Kovrizhnykh O.O., “Asimptotika resheniya singulyarno vozmuschennoi zadachi bystrodeistviya s dvumya malymi parametrami”, Tr. In-ta matematiki i mekhaniki UrO RAN, 25:2 (2019), 88–101 | DOI