Free Vibration Analysis of a Cylindrical Shell of Variable Thickness Partially Filled with Fluid
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 29 (2023) no. 2, pp. 27-40 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

The paper investigates the natural vibration frequencies of circular cylindrical shells of revolution completely or partially filled with an ideal compressible fluid. The thickness of the shells is not constant and varies in the meridional direction according to different laws. The behavior of the elastic structure and compressible fluid is described within the framework of the classical shell theory using the Euler equations. The effects of sloshing on the free surface of the fluid are not considered. The equations of motion of the shell together with the corresponding geometric and physical relations are reduced to a system of ordinary differential equations in new unknowns. The acoustic wave equation is transformed to a system of ordinary differential equations by applying the generalized differential quadrature method. A solution to the formulated boundary value problem is found using Godunov's orthogonal sweep method. To calculate the natural vibration frequencies, a stepwise procedure is used in combination with a refinement by the bisection method. The reliability of the obtained results is verified by comparing them with known numerical solutions. The behavior of lowest vibration frequencies at stepwise (linear and quadratic, having symmetric and asymmetric forms) and harmonic (with positive and negative curvature) variations in thickness is investigated for shells with different combinations of boundary conditions (simple support, rigid clamping, and cantilever) and levels of fluid filling. The study has revealed the existence of configurations that provide, at similar levels of filling, a significant increase in the frequency spectrum compared to shells of constant thickness with the same weight constraints.
Keywords: classical shell theory, cylindrical shell, Godunov's orthogonal sweep method, generalized differential quadrature method, free vibrations, variable thickness.
Mots-clés : compressible fluid
@article{TIMM_2023_29_2_a3,
     author = {S. A. Bochkarev and V. P. Matveenko},
     title = {Free {Vibration} {Analysis} of a {Cylindrical} {Shell} of {Variable} {Thickness} {Partially} {Filled} with {Fluid}},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {27--40},
     year = {2023},
     volume = {29},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2023_29_2_a3/}
}
TY  - JOUR
AU  - S. A. Bochkarev
AU  - V. P. Matveenko
TI  - Free Vibration Analysis of a Cylindrical Shell of Variable Thickness Partially Filled with Fluid
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2023
SP  - 27
EP  - 40
VL  - 29
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TIMM_2023_29_2_a3/
LA  - ru
ID  - TIMM_2023_29_2_a3
ER  - 
%0 Journal Article
%A S. A. Bochkarev
%A V. P. Matveenko
%T Free Vibration Analysis of a Cylindrical Shell of Variable Thickness Partially Filled with Fluid
%J Trudy Instituta matematiki i mehaniki
%D 2023
%P 27-40
%V 29
%N 2
%U http://geodesic.mathdoc.fr/item/TIMM_2023_29_2_a3/
%G ru
%F TIMM_2023_29_2_a3
S. A. Bochkarev; V. P. Matveenko. Free Vibration Analysis of a Cylindrical Shell of Variable Thickness Partially Filled with Fluid. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 29 (2023) no. 2, pp. 27-40. http://geodesic.mathdoc.fr/item/TIMM_2023_29_2_a3/

[1] Zheng D., Du J., Liu Y., “Vibration characteristics analysis of an elastically restrained cylindrical shell with arbitrary thickness variation”, Thin-Walled Struct., 165 (2021), 107930 | DOI

[2] Kim J., Kim K., Kim K., Hong K., Paek C., “Free vibration analysis of cross-ply laminated conical shell, cylindrical shell, and annular plate with variable thickness using the Haar wavelet discretization method”, Shock Vib., 2022 (2022), 6399675 | DOI

[3] Han R.P.S., Liu J.D., “Free vibration analysis of a fluid-loaded variable thickness cylindrical tank”, J. Sound Vib., 176 (1994), 235–253 | DOI | Zbl

[4] Nurul Izyan M.D., Viswanathan K.K., Nur Hafizah A.K., Sankar D.S., “Free vibration of layered cylindrical shells of variable thickness filled with fluid”, Proceedings of the 28th International Congress on Sound and Vibration (ICSV28) (Singapore, 24-28 July 2022)

[5] Xie K., Chen M., Li Z., “An analytic method for free and forced vibration analysis of stepped conical shells with arbitrary boundary conditions”, Thin-Walled Struct., 111 (2017), 126–137 | DOI

[6] Bacciocchi M., Eisenberger M., Fantuzzi N., Tornabene F., Viola E., “Vibration analysis of variable thickness plates and shells by the generalized differential quadrature method”, Compos. Struct., 156 (2016), 218–237 | DOI

[7] El-Kaabazi N., Kennedy D., “Calculation of natural frequencies and vibration modes of variable thickness cylindrical shells using the Wittrick–Williams algorithm”, Compos. Struct., 104–105 (2012), 4–12 | DOI

[8] Trotsenko Yu.V., “Svobodnye kolebaniya tsilindricheskoi obolochki peremennoi tolschiny”, Sb. tr. In-ta matematiki NAN Ukrainy, 14:2 (2017), 163–171 | Zbl

[9] Grigorenko A.Ya., Efimova T.L., Sokolova L.V., “On one approach to studying free vibrations of cylindrical shells of variable thickness in the circumferential direction within a refined statement”, J. Math. Sci., 171:4 (2010), 548–563 | DOI

[10] Godunov S.K., Obyknovennye differentsialnye uravneniya s postoyannymi koeffitsientami, v. I, Kraevye zadachi, ucheb. posobie, Izd-vo NGU, Novosibirsk, 1994, 264 pp. | MR

[11] Yudin A.S., Safronenko V.G., Vibroakustika strukturno-neodnorodnykh obolochek, Izd-vo YuFU, Rostov n/D, 2013, 424 pp.

[12] Yudin A.S., Ambalova N.M., “Vynuzhdennye kolebaniya koaksialnykh podkreplennykh tsilindricheskikh obolochek pri vzaimodeistvii s zhidkostyu”, Prikl. mekhanika, 25:12 (1989), 63–68 | Zbl

[13] Bochkarev S.A., “Natural vibrations of a cylindrical shell with fluid partly resting on a two-parameter elastic foundation”, Int. J. Struct. Stab. Dyn., 22 (2022), 2250071 | DOI | MR

[14] Bochkarev S.A., “Chislennoe modelirovanie sobstvennykh kolebanii pokoyascheisya na uprugom osnovanii tsilindricheskoi obolochki, chastichno zapolnennoi zhidkostyu”, Vychisl. tekhnologii, 27:4 (2022), 15–32 | DOI

[15] Bochkarev S.A., Lekomtsev S.V., Matveenko V.P., “Sobstvennye kolebaniya usechennykh konicheskikh obolochek, soderzhaschikh zhidkost”, Prikl. mekhanika, 86:4 (2022), 505–526 | DOI

[16] Sivadas K.R., Ganesan N., “Free vibration of circular cylindrical shells with axially varying thickness”, J. Sound Vib., 147:1 (1991), 73–85 | DOI

[17] Khloptseva N.S., “Vesovaya effektivnost tonkostennykh obolochek postoyannoi i peremennoi tolschiny”, Sb. nauch. tr. Mekhanika. Matematika, no. 9, Izd-vo Sarat. un-ta, Saratov, 2007, 155–157

[18] Karmishin A.V., Lyaskovets V.A., Myachenkov V.I. Frolov A.N., Statika i dinamika tonkostennykh obolochechnykh konstruktsii, Mashinostroenie, Moskva, 1975, 376 pp.

[19] Alfutov N.A., Zinovev P.A., Popov V.G., Raschet mnogosloinykh plastin i obolochek iz kompozitsionnykh materialov, Mashinostroenie, Moskva, 1984, 264 pp.

[20] Averbukh A.Z., Vetsman R.I., Genkin M.D., Kolebaniya elementov konstruktsii v zhidkosti, Nauka, Moskva, 1987, 158 pp.

[21] Amabili M., “Free vibration of partially filled, horizontal cylindrical shells”, J. Sound Vib., 191:5 (1996), 757–780 | DOI

[22] Shu C., Differential quadrature and its application in engineering, Springer-Verlag, London, 2000, 340 pp. | MR | Zbl

[23] Bochkarev S.A., “Sobstvennye kolebaniya usechennykh konicheskikh obolochek peremennoi tolschiny”, Vychislitelnaya mekhanika sploshnykh sred, 13:4 (2020), 402–413 | DOI

[24] Ganesan N., Sivadas K.R., “Vibration analysis of orthotropic shells with variable thickness”, Computers Structures, 35:3 (1990), 239–248 | DOI

[25] Maxúch T., Horacek J., Trnka J., Vesely J., “Natural modes and frequencies of a thin clamped-free steel cylindrical storage tank partially filled with water: FEM and measurement”, J. Sound Vib., 193:3 (1996), 669–690 | DOI

[26] Bochkarev S.A., Lekomtsev S.V., Matveenko V.P., “Chislennoe modelirovanie prostranstvennykh kolebanii tsilindricheskikh obolochek, chastichno zapolnennykh zhidkostyu”, Vychisl. tekhnologii, 18:2 (2013), 12–24

[27] Kashfutdinov B.D., Scheglov G.A., “Validatsiya svobodnogo programmnogo obespecheniya Code_Aster primenitelno k zadache modalnogo analiza tsilindricheskoi obolochki s zhidkostyu”, nauch. izdanie, Nauka i Obrazovanie, no. 6, 2017, 101–117 | DOI

[28] Ergin A., Uğurlu B., “Hydroelastic analysis of fluid storage tanks by using a boundary integral equation method”, J. Sound Vib., 275 (2004), 489–513 | DOI

[29] Gorshkov A.G., Morozov V.I., Ponomarev A.T., Shklyarchuk F.N., Aerogidrouprugost konstruktsii, Fizmatlit, Moskva, 2000, 592 pp.

[30] Bochkarev S.A., Lekomtsev S.V., “Stability analysis of composite cylindrical shell containing rotating fluid”, IOP J. Phys.: Conf. Ser., 1945, 2021, 012034 | DOI

[31] Bochkarev S.A., Lekomtsev S.V., “Natural vibrations and hydroelastic stability of laminated composite circular cylindrical shells”, Struct. Eng. Mech., 81:6 (2022), 769–780 | DOI

[32] Bochkarev S.A., Lekomtsev S.V., Senin A.N., “Chislennoe modelirovanie sobstvennykh kolebanii chastichno zapolnennykh zhidkostyu koaksialnykh obolochek s uchetom effektov na svobodnoi poverkhnosti”, Vestnik PNIPU. Mekhanika, 2022, no. 1, 23–35 | DOI