Mots-clés : equivalence transformations, group classification.
@article{TIMM_2023_29_2_a18,
author = {S. V. Khabirov},
title = {On the {Group} {Classification} of {Ideal} {Gas-Dynamic} {Relaxing} {Media}},
journal = {Trudy Instituta matematiki i mehaniki},
pages = {260--270},
year = {2023},
volume = {29},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TIMM_2023_29_2_a18/}
}
S. V. Khabirov. On the Group Classification of Ideal Gas-Dynamic Relaxing Media. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 29 (2023) no. 2, pp. 260-270. http://geodesic.mathdoc.fr/item/TIMM_2023_29_2_a18/
[1] Ovsyannikov L.V., “Programma “Podmodeli”. Gazovaya dinamika”, Prikl. matematika i mekhanika, 58:4 (1994), 30–55 | MR | Zbl
[2] Khabirov S.V., Mukminov T.F., “Graf vlozhennykh podalgebr 11-mernoi algebry simmetrii sploshnoi sredy”, Sib. elektron. mat. izv., 16 (2019), 121–143 | DOI | MR | Zbl
[3] Chirkunov Yu.A., Khabirov S.V., Elementy simmetriinogo analiza differentsialnykh uravnenii mekhaniki sploshnoi sredy, Izd-vo NGTU, Novosibirsk, 2012, 659 pp.
[4] Ovsyannikov L.V., Gruppovoi analiz differentsialnykh uravnenii, Nauka, M., 1978, 399 pp. | MR
[5] Khabirov S.V., Mukminov T.F., “Prostye volny konicheskikh dvizhenii”, Ufim. mat. zhurn., 14:2 (2022), 82–93
[6] Khabirov S.V., “Klassifikatsiya differentsialno invariantnykh podmodelei”, Sib. mat. zhurn., 45:3 (2004), 682–701 | MR | Zbl
[7] Ibragimov N.H., “A new conservation theorem”, J. Math. Anal. Appl., 333:1 (2007), 311–328 | DOI | MR | Zbl
[8] Chirkunov Yu.A., “Metod A-operatorov i zakony sokhraneniya dlya uravnenii gazovoi dinamiki”, Prikl. matematika i mekhanika, 50:2 (2009), 53–60 | MR
[9] Ibragimov N.Kh., Gruppy preobrazovanii v matematicheskoi fizike, Nauka, M., 1983, 280 pp. | MR
[10] Khabirov S.V., “Group analysis of the plane steady vortex submodel of ideal gas with varying entropy”, Mathematics, 9:16 (2021), 1–15 | DOI | MR
[11] Menschikov V.M., “O prodolzhenii invariantnykh reshenii uravnenii gazovoi dinamiki cherez udarnuyu volnu”, Dinamika sploshnoi sredy: sb. nauch. tr., 4, AN SSSR. Sib. otd-nie. In-t gidrodinamiki, 1970, 163–169
[12] Menschikov V.M., “O nepreryvnom sopryazhenii invariantnykh reshenii”, Dinamika sploshnoi sredy: sb. nauch. tr., 10, AN SSSR. Sib. otd-nie. In-t gidrodinamiki, 1972, 70–84
[13] Pukhnachev V.V., “Neustanovivshiesya dvizheniya vyazkoi zhidkosti so svobodnoi granitsei, opisyvaemye chastichno-invariantnymi resheniyami uravnenii Nave — Stoksa”, Dinamika sploshnoi sredy: sb. nauch. tr., 10, AN SSSR. Sib. otd-nie. In-t gidrodinamiki., 1972, 125–137
[14] Khabirov S.V., “Avtomodelnoe skhozhdenie udarnoi volny po teploprovodnomu gazu”, Prikl. matematika i mekhanika, 73:5 (2009), 731–740 | MR | Zbl
[15] Baikov V.A., Gazizov R.K., Ibragimov N.H., “Approximate groups of transformations”, Differential Equations, 29:10 (1993), 1487–1504 | MR | Zbl
[16] Malkin A.Ya., Isaev A.I., Reologiya: kontseptsiya, metody, prilozheniya, Izd.-vo “Professiya”, SPb, 2010, 557 pp.
[17] Vladimirov V.A., “Modelling system for relaxing media. Symmetry, restrictions and attractive features of invariant solutions”, Proc. of Institute of Mathematics of NAS of Ukraine, 30:Part 1 (2000), 231–238 | MR | Zbl
[18] Ovsyannikov L.V., Lektsii po osnovam gazovoi dinamiki, Izd. 2-e, dop., In-t kompyuternykh issledovanii, M.; Izhevsk, 2003, 336 pp. | MR