On the Group Classification of Ideal Gas-Dynamic Relaxing Media
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 29 (2023) no. 2, pp. 260-270 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

The group analysis of differential equations of ideal gas dynamics is most developed. Earlier, the state equations for thermodynamic parameters were assumed to be time-independent. The time dependence may take place for relaxing media, for example, as a result of rheology or due to the energy averaging of processes in a multiphase medium. The problem of group analysis of relaxing media is posed. First, equivalence transformations are calculated that change only the state equations. Next, the problem of group classification is solved: it is required to find, up to equivalence transformations, classes of state equations for which the admitted group is extended. This problem is partially solved in the present paper.
Keywords: gas dynamics, relaxing state equations
Mots-clés : equivalence transformations, group classification.
@article{TIMM_2023_29_2_a18,
     author = {S. V. Khabirov},
     title = {On the {Group} {Classification} of {Ideal} {Gas-Dynamic} {Relaxing} {Media}},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {260--270},
     year = {2023},
     volume = {29},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2023_29_2_a18/}
}
TY  - JOUR
AU  - S. V. Khabirov
TI  - On the Group Classification of Ideal Gas-Dynamic Relaxing Media
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2023
SP  - 260
EP  - 270
VL  - 29
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TIMM_2023_29_2_a18/
LA  - ru
ID  - TIMM_2023_29_2_a18
ER  - 
%0 Journal Article
%A S. V. Khabirov
%T On the Group Classification of Ideal Gas-Dynamic Relaxing Media
%J Trudy Instituta matematiki i mehaniki
%D 2023
%P 260-270
%V 29
%N 2
%U http://geodesic.mathdoc.fr/item/TIMM_2023_29_2_a18/
%G ru
%F TIMM_2023_29_2_a18
S. V. Khabirov. On the Group Classification of Ideal Gas-Dynamic Relaxing Media. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 29 (2023) no. 2, pp. 260-270. http://geodesic.mathdoc.fr/item/TIMM_2023_29_2_a18/

[1] Ovsyannikov L.V., “Programma “Podmodeli”. Gazovaya dinamika”, Prikl. matematika i mekhanika, 58:4 (1994), 30–55 | MR | Zbl

[2] Khabirov S.V., Mukminov T.F., “Graf vlozhennykh podalgebr 11-mernoi algebry simmetrii sploshnoi sredy”, Sib. elektron. mat. izv., 16 (2019), 121–143 | DOI | MR | Zbl

[3] Chirkunov Yu.A., Khabirov S.V., Elementy simmetriinogo analiza differentsialnykh uravnenii mekhaniki sploshnoi sredy, Izd-vo NGTU, Novosibirsk, 2012, 659 pp.

[4] Ovsyannikov L.V., Gruppovoi analiz differentsialnykh uravnenii, Nauka, M., 1978, 399 pp. | MR

[5] Khabirov S.V., Mukminov T.F., “Prostye volny konicheskikh dvizhenii”, Ufim. mat. zhurn., 14:2 (2022), 82–93

[6] Khabirov S.V., “Klassifikatsiya differentsialno invariantnykh podmodelei”, Sib. mat. zhurn., 45:3 (2004), 682–701 | MR | Zbl

[7] Ibragimov N.H., “A new conservation theorem”, J. Math. Anal. Appl., 333:1 (2007), 311–328 | DOI | MR | Zbl

[8] Chirkunov Yu.A., “Metod A-operatorov i zakony sokhraneniya dlya uravnenii gazovoi dinamiki”, Prikl. matematika i mekhanika, 50:2 (2009), 53–60 | MR

[9] Ibragimov N.Kh., Gruppy preobrazovanii v matematicheskoi fizike, Nauka, M., 1983, 280 pp. | MR

[10] Khabirov S.V., “Group analysis of the plane steady vortex submodel of ideal gas with varying entropy”, Mathematics, 9:16 (2021), 1–15 | DOI | MR

[11] Menschikov V.M., “O prodolzhenii invariantnykh reshenii uravnenii gazovoi dinamiki cherez udarnuyu volnu”, Dinamika sploshnoi sredy: sb. nauch. tr., 4, AN SSSR. Sib. otd-nie. In-t gidrodinamiki, 1970, 163–169

[12] Menschikov V.M., “O nepreryvnom sopryazhenii invariantnykh reshenii”, Dinamika sploshnoi sredy: sb. nauch. tr., 10, AN SSSR. Sib. otd-nie. In-t gidrodinamiki, 1972, 70–84

[13] Pukhnachev V.V., “Neustanovivshiesya dvizheniya vyazkoi zhidkosti so svobodnoi granitsei, opisyvaemye chastichno-invariantnymi resheniyami uravnenii Nave — Stoksa”, Dinamika sploshnoi sredy: sb. nauch. tr., 10, AN SSSR. Sib. otd-nie. In-t gidrodinamiki., 1972, 125–137

[14] Khabirov S.V., “Avtomodelnoe skhozhdenie udarnoi volny po teploprovodnomu gazu”, Prikl. matematika i mekhanika, 73:5 (2009), 731–740 | MR | Zbl

[15] Baikov V.A., Gazizov R.K., Ibragimov N.H., “Approximate groups of transformations”, Differential Equations, 29:10 (1993), 1487–1504 | MR | Zbl

[16] Malkin A.Ya., Isaev A.I., Reologiya: kontseptsiya, metody, prilozheniya, Izd.-vo “Professiya”, SPb, 2010, 557 pp.

[17] Vladimirov V.A., “Modelling system for relaxing media. Symmetry, restrictions and attractive features of invariant solutions”, Proc. of Institute of Mathematics of NAS of Ukraine, 30:Part 1 (2000), 231–238 | MR | Zbl

[18] Ovsyannikov L.V., Lektsii po osnovam gazovoi dinamiki, Izd. 2-e, dop., In-t kompyuternykh issledovanii, M.; Izhevsk, 2003, 336 pp. | MR