Quasilinear Equations with a Sectorial Set of Operators at Gerasimov--Caputo Derivatives
    
    
  
  
  
      
      
      
        
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 29 (2023) no. 2, pp. 248-259
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			The issues of unique solvability of the Cauchy problem are studied for a quasilinear equation solved
with respect to the highest fractional Gerasimov–Caputo derivative in a Banach space with closed operators from
the class $A_{\alpha,G}^{n}$ in the linear part and with a nonlinear operator continuous in the graph norm.
A theorem on the local existence and uniqueness of a solution to the Cauchy problem is proved in the case of
a locally Lipschitz nonlinear operator. Under the nonlocal Lipschitz condition for the nonlinear operator,
the existence of a unique solution on a predetermined interval is shown. Abstract results are illustrated by
examples of initial–boundary value problems for partial differential equations with Gerasimov–Caputo time derivatives.
			
            
            
            
          
        
      
                  
                    
                    
                    
                    
                    
                      
Keywords: 
Gerasimov–Caputo fractional derivative, Cauchy problem, sectorial set of operators, resolving family of operators, quasilinear equation, local solution, initial–boundary value problem.
Mots-clés : nonlocal solution
                    
                  
                
                
                Mots-clés : nonlocal solution
@article{TIMM_2023_29_2_a17,
     author = {V. E. Fedorov and K. V. Boyko},
     title = {Quasilinear {Equations} with a {Sectorial} {Set} of {Operators} at {Gerasimov--Caputo} {Derivatives}},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {248--259},
     publisher = {mathdoc},
     volume = {29},
     number = {2},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2023_29_2_a17/}
}
                      
                      
                    TY - JOUR AU - V. E. Fedorov AU - K. V. Boyko TI - Quasilinear Equations with a Sectorial Set of Operators at Gerasimov--Caputo Derivatives JO - Trudy Instituta matematiki i mehaniki PY - 2023 SP - 248 EP - 259 VL - 29 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TIMM_2023_29_2_a17/ LA - ru ID - TIMM_2023_29_2_a17 ER -
%0 Journal Article %A V. E. Fedorov %A K. V. Boyko %T Quasilinear Equations with a Sectorial Set of Operators at Gerasimov--Caputo Derivatives %J Trudy Instituta matematiki i mehaniki %D 2023 %P 248-259 %V 29 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/TIMM_2023_29_2_a17/ %G ru %F TIMM_2023_29_2_a17
V. E. Fedorov; K. V. Boyko. Quasilinear Equations with a Sectorial Set of Operators at Gerasimov--Caputo Derivatives. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 29 (2023) no. 2, pp. 248-259. http://geodesic.mathdoc.fr/item/TIMM_2023_29_2_a17/
