Quasilinear Equations with a Sectorial Set of Operators at Gerasimov--Caputo Derivatives
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 29 (2023) no. 2, pp. 248-259

Voir la notice de l'article provenant de la source Math-Net.Ru

The issues of unique solvability of the Cauchy problem are studied for a quasilinear equation solved with respect to the highest fractional Gerasimov–Caputo derivative in a Banach space with closed operators from the class $A_{\alpha,G}^{n}$ in the linear part and with a nonlinear operator continuous in the graph norm. A theorem on the local existence and uniqueness of a solution to the Cauchy problem is proved in the case of a locally Lipschitz nonlinear operator. Under the nonlocal Lipschitz condition for the nonlinear operator, the existence of a unique solution on a predetermined interval is shown. Abstract results are illustrated by examples of initial–boundary value problems for partial differential equations with Gerasimov–Caputo time derivatives.
Keywords: Gerasimov–Caputo fractional derivative, Cauchy problem, sectorial set of operators, resolving family of operators, quasilinear equation, local solution, initial–boundary value problem.
Mots-clés : nonlocal solution
@article{TIMM_2023_29_2_a17,
     author = {V. E. Fedorov and K. V. Boyko},
     title = {Quasilinear {Equations} with a {Sectorial} {Set} of {Operators} at {Gerasimov--Caputo} {Derivatives}},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {248--259},
     publisher = {mathdoc},
     volume = {29},
     number = {2},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2023_29_2_a17/}
}
TY  - JOUR
AU  - V. E. Fedorov
AU  - K. V. Boyko
TI  - Quasilinear Equations with a Sectorial Set of Operators at Gerasimov--Caputo Derivatives
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2023
SP  - 248
EP  - 259
VL  - 29
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TIMM_2023_29_2_a17/
LA  - ru
ID  - TIMM_2023_29_2_a17
ER  - 
%0 Journal Article
%A V. E. Fedorov
%A K. V. Boyko
%T Quasilinear Equations with a Sectorial Set of Operators at Gerasimov--Caputo Derivatives
%J Trudy Instituta matematiki i mehaniki
%D 2023
%P 248-259
%V 29
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TIMM_2023_29_2_a17/
%G ru
%F TIMM_2023_29_2_a17
V. E. Fedorov; K. V. Boyko. Quasilinear Equations with a Sectorial Set of Operators at Gerasimov--Caputo Derivatives. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 29 (2023) no. 2, pp. 248-259. http://geodesic.mathdoc.fr/item/TIMM_2023_29_2_a17/