A planar collapse of a gas with a linear velocity field
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 29 (2023) no. 2, pp. 207-216 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

Solutions of gas dynamics equations with a linear velocity field and uniform deformation are considered. The linearity matrix is diagonal nondegenerate with different eigenvalues. The state equation is an equation with separated density. The world lines of motion of gas particles are written for a solution of the state equation for a polytropic gas. The motion of particles describes collapses in two mutually perpendicular planes at different times. The motions of bounded specific volumes of particles are shown. The motions of a sonic surface, characteristics, and the characteristic conoid are described. Approximate formulas are given for calculating the motion of characteristics passing through any given surface. An exact solution with nonhomogeneous deformation is obtained for the linearity matrix of the solution without the conditions of density and pressure invariance.
Keywords: gas dynamics, linear velocity field, homogeneous deformation, inhomogeneous deformation, polytropic gas, collapse, characteristics.
@article{TIMM_2023_29_2_a15,
     author = {L. Z. Urazbakhtina and Yu. V. Yulmukhametova},
     title = {A planar collapse of a gas with a linear velocity field},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {207--216},
     year = {2023},
     volume = {29},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2023_29_2_a15/}
}
TY  - JOUR
AU  - L. Z. Urazbakhtina
AU  - Yu. V. Yulmukhametova
TI  - A planar collapse of a gas with a linear velocity field
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2023
SP  - 207
EP  - 216
VL  - 29
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TIMM_2023_29_2_a15/
LA  - ru
ID  - TIMM_2023_29_2_a15
ER  - 
%0 Journal Article
%A L. Z. Urazbakhtina
%A Yu. V. Yulmukhametova
%T A planar collapse of a gas with a linear velocity field
%J Trudy Instituta matematiki i mehaniki
%D 2023
%P 207-216
%V 29
%N 2
%U http://geodesic.mathdoc.fr/item/TIMM_2023_29_2_a15/
%G ru
%F TIMM_2023_29_2_a15
L. Z. Urazbakhtina; Yu. V. Yulmukhametova. A planar collapse of a gas with a linear velocity field. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 29 (2023) no. 2, pp. 207-216. http://geodesic.mathdoc.fr/item/TIMM_2023_29_2_a15/

[1] Riemann B., “Ein Beitrag zu den Untersuchungen über die Bewegung einer flüssigen gleichartigen Ellipsoides”, Abh. d. Königl. Gesell. der Wiss. zu Göttingen, 1861

[2] Borisov A.V., Mamaev I.S., Dinamika zhidkikh i gazovykh ellipsoidov, NITs “Regulyarnaya i khaoticheskaya dinamika”, Institut kompyuternykh issledovanii, M.; Izhevsk, 2010, 364 pp.

[3] Giron J.F., Ramsey S.D., Baty R.S., “Nemchinov-dyson solutions of the two-dimensional axisymmetric inviscid compressible flow equations”, Phys. Fluids., 32:12 (2020), 127116 | DOI

[4] Turtsynskii M.K., “O svoistvakh reshenii uravnenii gazovoi dinamiki na vraschayuscheisya ploskosti, otvechayuschikh dvizheniyam s odnorodnoi deformatsiei”, Vestn. Mosk. un-ta. Ser. 1. Matematika, mekhanika, 2020, no. 2, 39–45

[5] Yulmukhametova Yu.V., “Podmodeli gazovoi dinamiki s lineinym polem skorostei”, Sib. elektron. mat. izv., 9 (2012), 208–226 | MR | Zbl

[6] Urazbakhtina L. Z., “Integriruemye gidrodinamicheskie podmodeli s lineinym polem skorostei”, Sibirskii zhurnal industrialnoi matematiki, 15:3(51) (2012), 135–145 | Zbl

[7] Khabirov S.V., “Neregulyarnye chastichno invariantnye resheniya ranga 2 defekta 1 uravneni gazovoi dinamiki”, Sibirskii matematicheskii zhurnal, 43:5 (2002), 1168–1184 | MR

[8] Ovsyannikov L. V., Lektsii po osnovam gazovoi dinamiki, Institut kompyuternykh issledovanii, M.; Izhevsk, 2003, 336 pp. | MR

[9] Khabirov S. V., Lektsii. Analiticheskie metody v gazovoi dinamike, Izd-vo BGU, Ufa, 2013, 224 pp.

[10] Nikonorova R., Siraeva D., Yulmukhametova Y., “New exact solutions with a linear velocity field for the gas dynamics equations for two types of state equations”, Mathematics, 10:1 (2022), 123 | DOI | MR