Voir la notice du chapitre de livre
Mots-clés : exact solutions.
@article{TIMM_2023_29_2_a14,
author = {O. N. Ul'yanov and L. I. Rubina},
title = {On {Some} {Classes} of {Free} {Convection} {Motions}},
journal = {Trudy Instituta matematiki i mehaniki},
pages = {189--206},
year = {2023},
volume = {29},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TIMM_2023_29_2_a14/}
}
O. N. Ul'yanov; L. I. Rubina. On Some Classes of Free Convection Motions. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 29 (2023) no. 2, pp. 189-206. http://geodesic.mathdoc.fr/item/TIMM_2023_29_2_a14/
[1] Sidorov A.F., “Ob odnom klasse reshenii uravnenii gazovoi dinamiki i estestvennoi konvektsii”, Chislennye i analiticheskie resheniya zadach mekhaniki sploshnoi sredy, sb. statei, UNTs AN SSSR, Sverdlovsk, 1981, 101–117
[2] Sidorov A.F., “Analiticheskie metody postroeniya reshenii v nelineinykh zadachakh prostranstvennoi estestvennoi konvektsii (obz. doklad)”, Shestaya Vsesoyuznaya shkola-seminar po modelyam mekhaniki sploshnykh sred, Alma-Ata, Novosibirsk, 1981, 236–250
[3] Sidorov A.F., Khairullina O.B., “Primenenie polinomov Bernshteina dlya priblizhennogo resheniya zadachi estestvennoi konvektsii v gorizontalnom sloe”, Priblizhennye metody resheniya kraevykh zadach mekhaniki sploshnoi sredy, sb. statei, UNTs AN SSSR, Sverdlovsk, 1985, 52–63
[4] Sidorov A.F., “O dvukh klassakh reshenii uravnenii mekhaniki zhidkosti i gaza i ikh svyazi s teoriei beguschikh voln”, Prikladnaya mekhanika i tekhnicheskaya fizika, 2 (1989), 34–40
[5] Sidorov A.F., Khairullina O.B., “Raschet geksagonalnoi konvektsii v yacheikakh Benara s pomoschyu spetsialnykh trigonometricheskikh ryadov”, Priblizhennye metody issledovaniya nelineinykh zadach mekhaniki sploshnoi sredy, cb. nauch. tr., UNTs AN SSSR, Sverdlovsk, 1992, 35–50
[6] Boussinesq J., Theorie analitique de la chaleur, v. 2, GauthierVillars, Paris, 1903, 625 pp.
[7] Oberbeck A., “Ueber die Wärmeleitung der Flüssigkeiten bei der Berücksichtigung der Strömungen in Folge von Temperaturdifferenzen”, Annalen der Physik, 243:6 (1879), 271–292 | DOI
[8] Andreev V.K., Gaponenko Y.A., Goncharova O.N., Pukhnachev V.V., Mathematical models of convection, De Gruyter, Berlin; Boston, 2012, 417 pp. | DOI | MR | Zbl
[9] Mayeli P., Sheard G.J., “Buoyancy-driven flows beyond the Boussinesq approximation: a brief review”, Int. Commun. Heat and Mass Transfer, 125 (2021), 105316 | DOI
[10] Lappa M., “Incompressible flows and the Boussinesq approximation: 50 years of CFD”, Comptes Rendus. Mecanique, 350 (2022), 1–22 | DOI
[11] Ovsyannikov L.V., Gruppovoi analiz differentsialnykh uravnenii, Nauka, M., 1978, 399 pp. | MR
[12] Pukhnachev V.V., “Group-theoretical methods in convection theory”, AIP Conf. Proc., 1404, 2011, 27–38 | DOI
[13] Sidorov A.F., Shapeev V.P., Yanenko N.N., Method of differential relations and its application in gas dynamics, Nauka Publ., Novosibirsk, 1984, 272 pp. | MR
[14] Ostroumov G.A., Svobodnaya konvektsiya v usloviyakh vnutrennei zadachi, Gos. izd-vo tekhn.-teoret. lit., M., 1952, 256 pp. | MR
[15] Birikh R.V., “O termokapillyarnoi konvektsii v gorizontalnom sloe zhidkosti”, Prikladnaya mekhanika i tekhnicheskaya fizika, 1966, no. 3, 69–72
[16] Andreev V.K., Stepanova I.V., “Ostroumov–Birikh solution of convection equations with nonlinear buoyancy force”, Appl. Math. Comp., 228 (2014), 59–67 | DOI | MR | Zbl
[17] Barna I.F., Matyas L., “Analytic self-similar solutions of the Oberbeck–Boussinesq equations”, Chaos, Solitons and Fractals, 78 (2015), 249–255 | DOI | MR | Zbl
[18] Burmasheva N.V., Prosviryakov E.Y., “Exact solutions to the Oberbeck–Boussinesq equations for shear flows of a viscous binary fluid with allowance made for the Soret effect”, Izv. Irkutskogo Gos. Univ. Ser. Matematika, 37 (2021), 17–30 | DOI | MR | Zbl
[19] Rubina L.I., Ul'yanov O.N., “One method for solving systems of nonlinear partial differential equations”, Proc. Steklov Inst. Math., 288, suppl. 1, 2015, 180–188 | DOI | MR
[20] Ulyanov O.N., Rubina L.I., “O reduktsii odnoi sistemy uravnenii magnitnoi gazodinamiki k sistemam obyknovennykh differentsialnykh uravnenii”, Vestn. NIYaU MIFI, 11:2 (2022), 122–132 | DOI
[21] Clarkson P.A., Ludlow D.K., Priestley T.J., “The classical, direct, and nonclassical methods for symmetry reductions of nonlinear partial differential equations”, Methods and Appl. of Anal., 4:2 (1997), 173–195 | DOI | MR | Zbl
[22] Polyanin A.D., “Reduktsii i novye tochnye resheniya uravnenii konvektivnogo teplo- i massoperenosa s nelineinym istochnikom”, Vestnik NIYaU MIFI, 7:6 (2018), 458–469 | DOI
[23] Kurant R., Gilbert D., Metody matematicheskoi fiziki: Uravneniya v chastnykh proizvodnykh, Mir, M., 1964, 831 pp.
[24] Kochin N.E., Kibel I.A., Roze N.V, Teoreticheskaya gidromekhanika, v. Ch. 1, Fizmatgiz, M., 1963, 584 pp.