On Some Classes of Free Convection Motions
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 29 (2023) no. 2, pp. 189-206
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

A system of equations of unsteady spatial free convection of an incompressible viscous fluid in the Boussinesq approximation is considered. The analysis is based on the methods of reduction of linear and nonlinear partial differential equations (PDEs) and systems of PDEs to ordinary differential equations (ODEs) and systems of ODEs. These methods were proposed by the authors earlier, and their general principles are given in the paper. The methods are based on the construction of a system of equations of characteristics for a first-order PDE (the basic equation). This equation is constructed in a certain way by analyzing the original system of equations. The reductions lead to ODEs or systems of ODEs in which an independent variable $\psi$ is such that the equation $\psi(x,y,z,t)=\mathrm{const}$ defines a level surface for all unknown functions of the original system of PDEs. The methods are applicable to PDEs and systems of PDEs regardless of their type. The Oberbeck–Boussinesq equations are reduced to a system of ODEs with a functional arbitrariness, and an exact solution with a constant arbitrariness is found for the original system. The functional arbitrariness in the constructed reduction also yielded a system of ODEs in which the temperature $T$ is an independent variable. For this system exact solutions are found. A possible (vortex or vortex-free) motion of an incompressible fluid with free convection is analyzed. The cases of vortex and vortex-free motion of the fluid are identified. An exact solution defining a vortex-free motion of the fluid is written as a result of reductions for the original system of PDEs.
Keywords: free convection of viscous fluid, Oberbeck–Boussinesq equations, partial differential equations, reductions
Mots-clés : exact solutions.
@article{TIMM_2023_29_2_a14,
     author = {O. N. Ul'yanov and L. I. Rubina},
     title = {On {Some} {Classes} of {Free} {Convection} {Motions}},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {189--206},
     year = {2023},
     volume = {29},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2023_29_2_a14/}
}
TY  - JOUR
AU  - O. N. Ul'yanov
AU  - L. I. Rubina
TI  - On Some Classes of Free Convection Motions
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2023
SP  - 189
EP  - 206
VL  - 29
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TIMM_2023_29_2_a14/
LA  - ru
ID  - TIMM_2023_29_2_a14
ER  - 
%0 Journal Article
%A O. N. Ul'yanov
%A L. I. Rubina
%T On Some Classes of Free Convection Motions
%J Trudy Instituta matematiki i mehaniki
%D 2023
%P 189-206
%V 29
%N 2
%U http://geodesic.mathdoc.fr/item/TIMM_2023_29_2_a14/
%G ru
%F TIMM_2023_29_2_a14
O. N. Ul'yanov; L. I. Rubina. On Some Classes of Free Convection Motions. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 29 (2023) no. 2, pp. 189-206. http://geodesic.mathdoc.fr/item/TIMM_2023_29_2_a14/

[1] Sidorov A.F., “Ob odnom klasse reshenii uravnenii gazovoi dinamiki i estestvennoi konvektsii”, Chislennye i analiticheskie resheniya zadach mekhaniki sploshnoi sredy, sb. statei, UNTs AN SSSR, Sverdlovsk, 1981, 101–117

[2] Sidorov A.F., “Analiticheskie metody postroeniya reshenii v nelineinykh zadachakh prostranstvennoi estestvennoi konvektsii (obz. doklad)”, Shestaya Vsesoyuznaya shkola-seminar po modelyam mekhaniki sploshnykh sred, Alma-Ata, Novosibirsk, 1981, 236–250

[3] Sidorov A.F., Khairullina O.B., “Primenenie polinomov Bernshteina dlya priblizhennogo resheniya zadachi estestvennoi konvektsii v gorizontalnom sloe”, Priblizhennye metody resheniya kraevykh zadach mekhaniki sploshnoi sredy, sb. statei, UNTs AN SSSR, Sverdlovsk, 1985, 52–63

[4] Sidorov A.F., “O dvukh klassakh reshenii uravnenii mekhaniki zhidkosti i gaza i ikh svyazi s teoriei beguschikh voln”, Prikladnaya mekhanika i tekhnicheskaya fizika, 2 (1989), 34–40

[5] Sidorov A.F., Khairullina O.B., “Raschet geksagonalnoi konvektsii v yacheikakh Benara s pomoschyu spetsialnykh trigonometricheskikh ryadov”, Priblizhennye metody issledovaniya nelineinykh zadach mekhaniki sploshnoi sredy, cb. nauch. tr., UNTs AN SSSR, Sverdlovsk, 1992, 35–50

[6] Boussinesq J., Theorie analitique de la chaleur, v. 2, GauthierVillars, Paris, 1903, 625 pp.

[7] Oberbeck A., “Ueber die Wärmeleitung der Flüssigkeiten bei der Berücksichtigung der Strömungen in Folge von Temperaturdifferenzen”, Annalen der Physik, 243:6 (1879), 271–292 | DOI

[8] Andreev V.K., Gaponenko Y.A., Goncharova O.N., Pukhnachev V.V., Mathematical models of convection, De Gruyter, Berlin; Boston, 2012, 417 pp. | DOI | MR | Zbl

[9] Mayeli P., Sheard G.J., “Buoyancy-driven flows beyond the Boussinesq approximation: a brief review”, Int. Commun. Heat and Mass Transfer, 125 (2021), 105316 | DOI

[10] Lappa M., “Incompressible flows and the Boussinesq approximation: 50 years of CFD”, Comptes Rendus. Mecanique, 350 (2022), 1–22 | DOI

[11] Ovsyannikov L.V., Gruppovoi analiz differentsialnykh uravnenii, Nauka, M., 1978, 399 pp. | MR

[12] Pukhnachev V.V., “Group-theoretical methods in convection theory”, AIP Conf. Proc., 1404, 2011, 27–38 | DOI

[13] Sidorov A.F., Shapeev V.P., Yanenko N.N., Method of differential relations and its application in gas dynamics, Nauka Publ., Novosibirsk, 1984, 272 pp. | MR

[14] Ostroumov G.A., Svobodnaya konvektsiya v usloviyakh vnutrennei zadachi, Gos. izd-vo tekhn.-teoret. lit., M., 1952, 256 pp. | MR

[15] Birikh R.V., “O termokapillyarnoi konvektsii v gorizontalnom sloe zhidkosti”, Prikladnaya mekhanika i tekhnicheskaya fizika, 1966, no. 3, 69–72

[16] Andreev V.K., Stepanova I.V., “Ostroumov–Birikh solution of convection equations with nonlinear buoyancy force”, Appl. Math. Comp., 228 (2014), 59–67 | DOI | MR | Zbl

[17] Barna I.F., Matyas L., “Analytic self-similar solutions of the Oberbeck–Boussinesq equations”, Chaos, Solitons and Fractals, 78 (2015), 249–255 | DOI | MR | Zbl

[18] Burmasheva N.V., Prosviryakov E.Y., “Exact solutions to the Oberbeck–Boussinesq equations for shear flows of a viscous binary fluid with allowance made for the Soret effect”, Izv. Irkutskogo Gos. Univ. Ser. Matematika, 37 (2021), 17–30 | DOI | MR | Zbl

[19] Rubina L.I., Ul'yanov O.N., “One method for solving systems of nonlinear partial differential equations”, Proc. Steklov Inst. Math., 288, suppl. 1, 2015, 180–188 | DOI | MR

[20] Ulyanov O.N., Rubina L.I., “O reduktsii odnoi sistemy uravnenii magnitnoi gazodinamiki k sistemam obyknovennykh differentsialnykh uravnenii”, Vestn. NIYaU MIFI, 11:2 (2022), 122–132 | DOI

[21] Clarkson P.A., Ludlow D.K., Priestley T.J., “The classical, direct, and nonclassical methods for symmetry reductions of nonlinear partial differential equations”, Methods and Appl. of Anal., 4:2 (1997), 173–195 | DOI | MR | Zbl

[22] Polyanin A.D., “Reduktsii i novye tochnye resheniya uravnenii konvektivnogo teplo- i massoperenosa s nelineinym istochnikom”, Vestnik NIYaU MIFI, 7:6 (2018), 458–469 | DOI

[23] Kurant R., Gilbert D., Metody matematicheskoi fiziki: Uravneniya v chastnykh proizvodnykh, Mir, M., 1964, 831 pp.

[24] Kochin N.E., Kibel I.A., Roze N.V, Teoreticheskaya gidromekhanika, v. Ch. 1, Fizmatgiz, M., 1963, 584 pp.